Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. (1/592)

Conversion of serotonin to N-acetylserotonin, the precursor of the circadian neurohormone melatonin, is catalyzed by serotonin N-acetyltransferase (AANAT) in a reaction requiring acetyl coenzyme A (AcCoA). AANAT is a globular protein consisting of an eight-stranded beta sheet flanked by five alpha helices; a conserved motif in the center of the beta sheet forms the cofactor binding site. Three polypeptide loops converge above the AcCoA binding site, creating a hydrophobic funnel leading toward the cofactor and serotonin binding sites in the protein interior. Two conserved histidines not found in other NATs are located at the bottom of the funnel in the active site, suggesting a catalytic mechanism for acetylation involving imidazole groups acting as general acid/base catalysts.  (+info)

Pharmacological characterization of beta2-adrenoceptor in PGT-beta mouse pineal gland tumour cells. (2/592)

1. The adrenoceptor in a mouse pineal gland tumour cell line (PGT-beta) was identified and characterized using pharmacological and physiological approaches. 2. Adrenaline and noradrenaline, adrenoceptor agonists, stimulated cyclic AMP generation in a concentration-dependent manner, but had no effect on inositol 1,4,5-trisphosphate production. Adrenaline was a more potent activator of cyclic AMP generation than noradrenaline, with half maximal-effective concentrations (EC50) seen at 175+/-22 nM and 18+/-2 microM for adrenaline and noradrenaline, respectively. 3. The addition of forskolin synergistically stimulated the adrenaline-mediated cyclic AMP generation in a concentration-dependent manner. 4. The pA2 value for the specific beta2-adrenoceptor antagonist ICI-118,551 (8.7+/-0.4) as an antagonist of the adrenaline-stimulated cyclic AMP generation were 3 units higher than the value for the betaI-adrenoceptor antagonist atenolol (5.6+/-0.3). 5. Treatment of the cells with adrenaline and forskolin evoked a 3 fold increase in the activity of serotonin N-acetyltransferase with the peak occurring 6 h after stimulation. 6. These results suggest the presence of beta2-adrenoceptors in mouse pineal cells and a functional relationship between the adenylyl cyclase system and the regulation of N-acetyltransferase expression.  (+info)

Two arylalkylamine N-acetyltransferase genes mediate melatonin synthesis in fish. (3/592)

Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT, EC is the first enzyme in the conversion of serotonin to melatonin. Large changes in AANAT activity play an important role in the daily rhythms in melatonin production. Although a single AANAT gene has been found in mammals and the chicken, we have now identified two AANAT genes in fish. These genes are designated AANAT-1 and AANAT-2; all known AANATs belong to the AANAT-1 subfamily. Pike AANAT-1 is nearly exclusively expressed in the retina and AANAT-2 in the pineal gland. The abundance of each mRNA changes on a circadian basis, with retinal AANAT-1 mRNA peaking in late afternoon and pineal AANAT-2 mRNA peaking 6 h later. The pike AANAT-1 and AANAT-2 enzymes (66% identical amino acids) exhibit marked differences in their affinity for serotonin, relative affinity for indoleethylamines versus phenylethylamines and temperature-activity relationships. Two AANAT genes also exist in another fish, the trout. The evolution of two AANATs may represent a strategy to optimally meet tissue-related requirements for synthesis of melatonin: pineal melatonin serves an endocrine role and retinal melatonin plays a paracrine role.  (+info)

N-acetyltransferase 1 genetic polymorphism, cigarette smoking, well-done meat intake, and breast cancer risk. (4/592)

N-Acetyltransferase 1 (NAT1), encoded by the polymorphic NAT1 gene, has been shown to be one of the major enzymes in human breast tissue that activates aromatic and heterocyclic amines. Humans are mainly exposed to these carcinogens through cigarette smoking and consumption of well-done meat. To test the hypothesis that variations in the NAT1 gene are related to breast cancer risk, particularly among women who smoke or consume high levels of well-done meat, a nested case-control study was conducted in a prospective cohort study of 41,837 postmenopausal Iowa women. Information on cigarette smoking and other breast cancer risk factors was obtained at the baseline survey conducted in 1986. DNA samples and information on the consumption of well-done meat were obtained, in the case-control study, from breast cancer cases diagnosed from 1992 to 1994 and a random sample of cancer-free cohort members. Genomic DNA samples obtained from 154 cases and 330 controls were assayed for 11 NAT1 alleles (NAT1*3, *4, *5, *10, *11, *14, *15, *16, *17, *19, and *22). The NAT1*4 allele was the predominant allele observed in this study population, accounting for 73.2% (72.4% in cases versus 73.8% in controls) of the total alleles analyzed. Compared to controls, breast cancer cases had a slightly higher frequency of the NAT1*10 allele (18.8% in cases versus 17.3% in controls) and a substantially higher frequency of the NAT1*11 allele (3.6% versus 1.2%). In multivariate analyses, we found a 30% [95% confidence interval (CI) = 0.8-1.9] elevated risk of breast cancer associated with the NAT1*10 allele and a nearly 4-fold (95% CI = 1.5-10.5) elevated risk associated with the NAT1*11 allele. The positive association of breast cancer with the NAT1*11 allele was more evident among smokers [odds ratio (OR) = 13.2, 95% CI = 1.5-116.0] and those who consumed a high level of red meat (OR = 6.1, 95% CI = 1.1-33.2) or consistently consumed their red meat well done (OR = 5.6, 95% CI = 0.5-62.7). The association of the NAT1*10 allele with breast cancer was mainly confined to former smokers (OR = 3.3, 95% CI = 1.2-9.5). These findings are consistent with a role for the NAT1 gene in the etiology of human breast cancer.  (+info)

Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. (5/592)

The natural life cycle of alphaviruses, a group of plus-strand RNA viruses, involves transmission to vertebrate hosts via mosquitoes. Chronic infections are established in mosquitoes (and usually in mosquito cell cultures), but infection of susceptible vertebrate cells typically results in rapid shutoff of host mRNA translation and cell death. Using engineered Sindbis virus RNA replicons expressing puromycin acetyltransferase as a dominant selectable marker, we identified mutations allowing persistent, noncytopathic replication in BHK-21 cells. Two of these adaptive mutations involved single-amino-acid substitutions in the C-terminal portion of nsP2, the viral helicase-protease. At one of these loci, nsP2 position 726, numerous substitution mutations were created and characterized in the context of RNA replicons and infectious virus. Our results suggest a direct correlation between the level of viral RNA replication and cytopathogenicity. This work also provides a series of alphavirus replicons for noncytopathic gene expression studies (E. V. Agapov, I. Frolov, B. D. Lindenbach, B. M. Pragai, S. Schlesinger, and C. M. Rice, Proc. Natl. Acad. Sci. USA 95:12989-12994, 1998) and a general strategy for selecting RNA viral mutants adapted to different cellular environments.  (+info)

Chromosomal aberrations in humans induced by urban air pollution: influence of DNA repair and polymorphisms of glutathione S-transferase M1 and N-acetyltransferase 2. (6/592)

We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomarker of genotoxic damage and dimethylsulfate-induced unscheduled DNA synthesis in mononuclear WBCs, the glutathione S-transferase M1 (GSTM1) genotype, and the N-acetyltransferase 2 (NAT2) genotype as biomarkers of susceptibility. The bus drivers, who had previously been observed to have elevated levels of aromatic DNA adducts in their peripheral mononuclear cells, showed a significantly higher frequency of cells with chromosomal aberrations as compared with the postal workers. In the bus drivers, unscheduled DNA synthesis correlated negatively with the number of cells with gaps, indicating a protective effect of DNA repair toward chromosome damage. Bus drivers with the GSTM1 null and slow acetylator NAT2 genotype had an increased frequency of cells with chromosomal aberrations. NAT2 slow acetylators also showed elevated chromosomal aberration counts among the postal workers. Our results suggest that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations.  (+info)

Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER levels frame melatonin synthesis. (7/592)

Neurotransmitter-driven activation of transcription factors is important for control of neuronal and neuroendocrine functions. We show with an in vivo approach that the norepinephrine cAMP-dependent rhythmic hormone production in rat pineal gland is accompanied by a temporally regulated switch in the ratio of a transcriptional activator, phosphorylated cAMP-responsive element-binding protein (pCREB), and a transcriptional inhibitor, inducible cAMP early repressor (ICER). pCREB accumulates endogenously at the beginning of the dark period and declines during the second half of the night. Concomitant with this decline, the amount of ICER rises. The changing ratio between pCREB and ICER shapes the in vivo dynamics in mRNA and, thus, protein levels of arylalkylamine-N-acetyltransferase, the rate-limiting enzyme of melatonin synthesis. Consequently, a silenced ICER expression in pinealocytes leads to a disinhibited arylalkylamine-N-acetyltransferase transcription and a primarily enhanced melatonin synthesis.  (+info)

Polymorphisms of xenobiotic-metabolizing enzymes and susceptibility to cancer. (8/592)

The variation in individual responses to exogenous agents is exceptionally wide. It is because of this large diversity of responsiveness that risk factors to environmentally induced diseases have been difficult to pinpoint, particularly at low exposure levels. Opportunities now exist for studies of host factors in cancer or other diseases in which an environmental component can be presumed. Many of the studies have shown an elevated disease proneness for individuals carrying the potential at-risk alleles of metabolic genes, but a number of controversial results have also been reported. This article is an overview of the data published to date on metabolic genotypes related to individual susceptibility to cancer.  (+info)