Molecular characterization of M1146, an American isolate of Ljungan virus (LV) reveals the presence of a new LV genotype. (65/710)

Ljungan virus (LV) is a suspected human pathogen recently isolated from bank voles in Sweden. This study describes the genetic characterization of a virus, M1146, which was isolated in 1962 from another vole species (Microtus montanus), trapped in Oregon, USA. Based on antigenic properties, M1146 was postulated previously as a putative member of the family PICORNAVIRIDAE: The near complete genomic sequence verifies that M1146 is a member of the Picornaviridae, most closely related to LVs isolated in Sweden. The strain M1146 possesses typical LV genomic organization, including a cluster of two 2A homologues. There are significant differences throughout the capsid protein region, while the non-structural region of M1146 is closely related to the Swedish LV genomes. Genetic and phylogenetic analyses show that M1146 represents a new genotype within the distinct LV cluster. Isolation of LV from both Swedish and American voles trapped over a period of 30 years suggests a continuous worldwide presence.  (+info)

Partial protection induced by phage library-selected peptides mimicking epitopes of Schistosoma japonicum. (66/710)

OBJECTIVE: To obtain peptide mimicking epitopes of Schistosoma japonicum (S. japonicum) through screening of a phage peptide library and to test their potential for induction of protection. METHODS: S. japonicum infected sera from Microtus fortis (IMFS) and normal sera from Microtus fortis (NMFS) were used respectively to screen a 12-mers random peptide library by testing the reactivity of anti-S. japonicum serum with the phagotopes. After three rounds of biopanning, the pooled phages were used to immunize mice, after which challenge infection was performed. RESULTS: Of 12 randomly picked clones, 10 clones selected using IMFS and 7 clones selected using NMFS were shown to be antigenic. Significant reduction in adult worms (22.6%) and a high reduction (68.9%) in liver eggs were achieved following immunization with phages screened with IMFS. However, no protection was elicited by those selected with NMFS. CONCLUSION: The results show that the phagotopes are both antigenic and immunogenic, suggesting a potential use of phage displayed peptide as novel vaccines against S. japonicum.  (+info)

A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. (67/710)

Although the role of nucleus accumbens (NAcc) dopamine (DA) in reward learning has been extensively studied, few investigations have addressed its involvement in learning socially relevant information. Here, we have examined the involvement of NAcc DA in social attachment of the "monogamous" prairie vole (Microtus orchrogaster). We first demonstrated that DA is necessary for the formation of social attachment in male prairie voles, because administration of haloperidol blocked, whereas apomorphine induced, partner-preference formation. We then provided the first descriptions of DA neuroanatomy and tissue content in vole NAcc, and mating appeared to induce a 33% increase in DA turnover. We also showed that administration of haloperidol directly into the NAcc blocked partner preferences induced by mating and apomorphine. In addition, administration of apomorphine into the NAcc but not the caudate putamen induced partner preferences in the absence of mating. Together, our data support the hypothesis that NAcc DA is critical for pair-bond formation in male prairie voles.  (+info)

Quantitative investigation of reproduction of gonosomal condensed chromatin during trophoblast cell polyploidization and endoreduplication in the East-European field vole Microtus rossiaemeridionalis. (68/710)

Simultaneous determinations of DNA content in cell nuclei and condensed chromatin bodies formed by heterochromatized regions of sex chromosomes (gonosomal chromatin bodies, GCB) have been performed in two trophoblast cell populations of the East-European field vole Microtus rossiaemeridionalis: in the proliferative population of trophoblast cells of the junctional zone of placenta and in the secondary giant trophoblast cells. One or two GCBs have been observed in trophoblast cell nuclei of all embryos studied (perhaps both male and female). In the proliferative trophoblast cell population characterized by low ploidy levels (2-16c) and in the highly polyploid population of secondary giant trophoblast cells (32-256c) the total DNA content in GCB increased proportionally to the ploidy level. In individual GCBs the DNA content also rose proportionally to the ploidy level in nuclei both with one and with two GCBs in both trophoblast cell populations. Some increase in percentage of nuclei with 2-3 GCBs was shown in nuclei of the placenta junctional zone; this may be accounted for by genome multiplication via uncompleted mitoses. In nuclei of the secondary giant trophoblast cells (16-256c) the number of GCBs did not exceed 2, and the fraction of nuclei with two GCBs did not increase, which suggests the polytene nature of sex chromosomes in these cells. In all classes of ploidy the DNA content in trophoblast cell nuclei with the single GCB was lower than in nuclei with two and more GCBs. This can indicate that the single GCB in many cases does not derive from fusion of two GCBs. The measurements in individual GCBs suggest that different heterochromatized regions of the X- and Y-chromosome may contribute in GCB formation.  (+info)

Effects of postnatal stress on the development of type 1 diabetes in bank voles (Clethrionomys glareolus). (69/710)

Wild bank voles (Clethrionomys glareolus) kept in the laboratory under barren housing conditions develop high incidences of type 1 diabetes mellitus due to beta cell-specific lysis in association with the appearance of GAD65, IA-2, and insulin autoantibodies. Wild-caught and immediately analyzed voles show no histological signs of diabetes, and the disease may therefore be induced by circumstances related to the housing of the animals in captivity. We tested the possibility that postnatal stress by either maternal separation or water immersion at different intervals would induce diabetes in adult bank voles. We found that low-frequent stress during the first 21 days of life increases, whereas high-frequent stress markedly reduces, the incidence of type 1 diabetes in adulthood. These results differentiate the role of early-experienced stress on subsequent type 1 diabetes development and emphasize that the bank vole may serve as a useful new animal model for the disease.  (+info)

Development of type 1 diabetes in wild bank voles associated with islet autoantibodies and the novel ljungan virus. (70/710)

Wild bank voles (Clethrionomys glareolus) may develop diabetes in laboratory captivity. The aim of this study was to test whether bank voles develop type 1 diabetes in association with Ljungan virus. Two groups of bank voles were analyzed for diabetes, pancreas histology, autoantibodies to glutamic acid decarboxylase (GAD65), IA-2, and insulin by standardized radioligand-binding assays as well as antibodies to in vitro transcribed and translated Ljungan virus antigens. Group A represented 101 trapped bank voles, which were screened for diabetes when euthanized within 24 hours of capture. Group B represented 67 bank voles, which were trapped and kept in the laboratory for 1 month before being euthanized. Group A bank voles did not have diabetes. Bank voles in group B (22/67; 33%) developed diabetes due to specific lysis of pancreatic islet beta cells. Compared to nondiabetic group B bank voles, diabetic animals had increased levels of GAD65 (P < .0001), IA-2 (P < .0001), and insulin (P = .03) autoantibodies. Affected islets stained positive for Ljungan virus, a novel picorna virus isolated from bank voles. Ljungan virus inoculation of nondiabetic wild bank voles induced beta-cell lysis. Compared to group A bank voles, Ljungan virus antibodies were increased in both nondiabetic (P < .0001) and diabetic (P = .0015) group B bank voles. Levels of Ljungan virus antibodies were also increased in young age at onset of newly diagnosed type 1 diabetes in children (P < .01). These findings support the hypothesis that the development of type 1 diabetes in captured wild bank voles is associated with Ljungan virus. It is speculated that bank voles may have a possible zoonotic role as a reservoir and vector for virus that may contribute to the incidence of type 1 diabetes in humans.  (+info)

Aromatase expression and role of estrogens in male gonad : a review. (71/710)

The ability of the testis to convert irreversibly androgens into estrogens is related to the presence of a microsomal enzymatic complex named aromatase, which is composed of a specific glycoprotein, the cytochrome P450 aromatase (P450arom) and an ubiquitous reductase. The aromatase gene is unique in humans and contained 18 exons, 9 of them being translated. In the rat testis we have immunolocalized the P450arom not only in Leydig cells but also in germ cells and especially in elongated spermatids. Related to the stage of germ cell maturation, we have shown that the level of P450arom mRNA transcripts decreases, it is much more abundant in pachytene spermatocytes and round spermatids than in mature germ cells whereas the aromatase activity is 2-4 fold greater in spermatozoa when compared to the younger germ cells. Using a highly specific quantitative competitive RT-PCR method we have evidenced that several factors direct the expression of the aromatase gene in Leydig cells, Sertoli cells, pachytene spermatocytes and round spermatids, and it is obvious that promoter PII is the main one but other promoters could be concerned. In the bank-vole testis we have observed a positive correlation between a fully developed spermatogenesis and a strong immunoreactivity for both P450arom and estrogen receptor beta not only in Sertoli cells but also in pachytene spermatocytes and round spermatids. Our recent data obtained from ejaculated human spermatozoa demonstrate the presence of aromatase both in terms of mRNA and protein, and in addition, we suggest that aromatase could be involved in the acquisition of sperm motility. Indeed in men the congenital aromatase deficiency is associated with severe bone maturation problems and sterility. Together with the widespread distribution of estrogen receptors in testicular cells these data clearly show that estrogens play a physiological role in the regulation of spermatogenesis in mammals.  (+info)

Reductions in total body fat decrease humoral immunity. (72/710)

Mounting an immune response requires substantial energy, and it is well known that marked reductions in energy availability (e.g. starvation) can suppress immune function, thus increasing disease susceptibility and compromising survival. We tested the hypothesis that moderate reductions in energy availability impair humoral immunity. Specifically, we examined the effects of partial lipectomy (LIPx) on humoral immunity in two seasonally breeding rodent species, prairie voles (Microtus ochrogaster) and Siberian hamsters (Phodopus sungorus). Animals received bilateral surgical removal of epididymal white adipose tissue (EWATx), inguinal white adipose tissue (IWATx) or sham surgeries and were injected with the antigen keyhole limpet haemocyanin (KLH) either four or 12 weeks after surgery. In prairie voles, serum anti-KLH immunoglobulin G (IgG) did not differ significantly at four weeks. At 12 weeks, serum IgG was significantly reduced in IWATx, but not EWATx animals, compared with sham-operated animals. In Siberian hamsters, both IWATx and EWATx animals reduced serum IgG at four weeks. At 12 weeks, EWATx hamsters displayed a significant compensatory increase in IWAT pad mass compared with sham-operated hamsters, and serum IgG no longer differed from sham-operated animals. There was no significant increase in EWAT in IWATx hamsters compared with sham animals and IgG remained significantly reduced in IWATx hamsters. These results suggest that reductions in energy availability can impair humoral immunity.  (+info)