Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system. (65/119)

 (+info)

A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. (66/119)

 (+info)

The artificial silicon retina in retinitis pigmentosa patients (an American Ophthalmological Association thesis). (67/119)

PURPOSE: In a published pilot study, a light-activated microphotodiode-array chip, the artificial silicon retina (ASR), was implanted subretinally in 6 retinitis pigmentosa (RP) patients for up to 18 months. The ASR electrically induced retinal neurotrophic rescue of visual acuity, contrast, and color perception and raised several questions: (1) Would neurotrophic effects develop and persist in additionally implanted RP patients? (2) Could vision in these patients be reliably assessed? (3) Would the ASR be tolerated and function for extended periods? METHODS: Four additional RP patients were implanted and observed along with the 6 pilot patients. Of the 10 patients, 6 had vision levels that allowed for more standardized testing and were followed up for 7+ years utilizing ETDRS charts and a 4-alternative forced choice (AFC) Chow grating acuity test (CGAT). A 10-AFC Chow color test (CCT) extended the range of color vision testing. Histologic examination of the eyes of one patient, who died of an unrelated event, was performed. RESULTS: The ASR was well tolerated, and improvement and/or slowing of vision loss occurred in all 6 patients. CGAT extended low vision acuity testing by logMAR 0.6. CCT expanded the range of color vision testing and correlated well with PV-16 (r = 0.77). An ASR recovered from a patient 5 years after implantation showed minor disruption and excellent electrical function. CONCLUSION: ASR-implanted RP patients experienced prolonged neurotrophic rescue of vision. CGAT and CCT extended the range of acuity and color vision testing in low vision patients. ASR implantation may improve and prolong vision in RP patients.  (+info)

Artificial lung basics: fundamental challenges, alternative designs and future innovations. (68/119)

There exists a growing demand for new technology that can take over the function of the human lung, from assisting an injured or recently transplanted lung to completely replacing the native organ. Many obstacles must be overcome to achieve the lofty goals and expectations of such a device. An artificial lung must be able to sustain the gas exchange requirements of a normal functioning lung. Pursuant to this purpose, the device must maintain appropriate blood pressure, decrease injury to blood cells and minimize clotting and immunologic response. Attachment methods vary, and ideally researchers want to find a way that minimizes bodily trauma, maximizes gas exchange and utilizes the inherent properties of the native lung. The currently proposed methods include the parallel, in-series and venous double-lumen cannula configurations. For the time being, current research focuses on the extracorporeal (i.e., outside the body) placement, but ultimate long-term goals look toward total implantation.  (+info)

The artificial endothelium. (69/119)

As the world of critical care medicine advances, extracorporeal therapies (ECC) have become commonplace in the management of the high risk intensive care patient. ECC encompasses a wide variety of technologies from hemodialysis, continuous renal replacement therapy (CRRT) and plasmapheresis, to cardiopulmonary bypass (CPB), extracorporeal life support (ECLS) and hepatic support. The development of internal man made organs is the next step with ventricular assist devices and artificial lungs. As we advance the technologies with smaller devices, and more intricate circuitry, we lack the keystone necessary to control the blood-biomaterial interface. For the last 50 years much has been learned about surface induced thrombosis and attempts have been made to prevent it with alternative systemic anticoagulation, circuitry surface modifications, or a combination of both. Despite these efforts, systemic or regional anticoagulation remain necessary for both laboratory and clinical application of ECC. As such, the development of an endothelial-like, biomimetic surface to reduce or perhaps even eliminate the blood activation/thrombus formation events that occur upon exposure to artificial surfaces is paramount.  (+info)

Interview. The story of Advanced BioHealing: commercializing bioengineered tissue products. Mr Tozer speaks to Emily Culme-Seymour, Assistant Commissioning Editor. (70/119)

 (+info)

Degradation studies and biological behavior on an artificial cornea material. (71/119)

 (+info)

Potential therapeutic efficacy of a virtual pupil made of polarizing plates for correction of aniridia. (72/119)

 (+info)