Effect of bedding control on amount of house dust mite allergens, asthma symptoms, and peak expiratory flow rate. (33/346)

This quasi-experimental study was designed to investigate the effect of bedding control on the amount of house dust mite (HDM) allergens, asthma symptoms, and peak expiratory flow rate (PEFR) in asthmatics sensitive to HDMs. The subjects in the study were drawn from patients receiving treatment at the allergy clinics of three university-affiliated hospitals in Seoul. Forty-two patients without prior practice of the bedding control used in this study were selected. They commonly showed bronchial asthma caused by HDMs, and exhibited strong positive points (more than 3 points) in skin prick test (D. farinae, D. pteronyssinus), and positive response in both fluoro-allergosorbent test (FAST), and PC20 methacholine test. Of the subjects, alternatively, 22 were assigned to the experimental group and 20 to control group. Bedding control consisted of the use of outer cotton covers, boiling them for 10 minutes fortnightly, and disinfecting bedding by sunlight fortnightly. The experimental group was under bedding control for 4 weeks. The data were collected from October 2000 to January 2001. The results were as follows: 1. After bedding control, the total amount of HDM allergens decreased significantly in the experimental group. However there was no significant difference in the decrease of the amount of HDM allergens between the two groups. 2. Of the asthma symptoms, there was significant difference only in the decrease of the frequency of dyspnea, and in the increase of sleeping disturbance between the two groups after bedding control. 3. After bedding control, PEFR increased in the experimental group whereas it decreased in the control group. However, neither change was significant. The above findings indicate that bedding control improved several asthma symptoms in asthmatics sensitive to HDMs. Accordingly, we suggest that bedding control is adopted as a useful nursing intervention in the field.  (+info)

Sensitization to Dermatophagoides pteronyssinus and Blomia tropicalis extracts and recombinant mite allergens in atopic Thai patients. (34/346)

Mite surveys in Thailand indicated that Dermatophagoides pteronyssinus (Dp) is predominant, but so far there were no data available on Blomia tropicalis (Bt), which is prevalent in the Asia Pacific region. Skin prick testing (SPT) was performed in 40 atopic children, 45 atopic adults and 17 non-atopic volunteers. Skin reactions to Dp were found in 25/40 (62.5%) and 23/45 (51.1%); skin reactions to Bt were found in 15/40 (37.5%) and 18/45 (40%) in atopic children and adults, respectively. SPT to the major sensitizing allergens Der p 1, Der p 2, Der p 5, and Blo t 5 showed positive results in 14/40 (35%), 12/40 (30%), 1/40 (2.5%) and 4/40 (10%) of atopic children, and in 12/45 (26.7%), 13/45 (28.9%), 5/45 (11.1%), 6/45 (13.3%) of atopic adults, respectively. The results indicate that Dp is one of the major sources of allergy, while Bt is a minor one and that Der p 1 and Der p 2 are important mite allergens in Chiang Mai, Thailand.  (+info)

Preparation and properties of monoclonal antibodies against lipopolysaccharide-sensitive serine protease zymogen, factor C, from horseshoe crab (Tachypleus tridentatus) hemocytes. (35/346)

Seventeen murine monoclonal antibodies (mAbs) against horseshoe crab clotting factor, factor C, were prepared and characterized. When the binding sites of these mAbs were analyzed by immunoblotting, ten mAbs recognized nonreduced factor C, five mAbs were directed against the heavy chain, and two mAbs were directed against the B chain. Three mAbs, 1H4, 2C12, and 2A7, one selected from each group, were used for further study. The mAb 1H4, which recognized only nonreduced factor C molecule, inhibited the factor C activity in a dose-dependent manner. It also inhibited lipopolysaccharide (LPS)- and alpha-chymotrypsin-mediated activations of the zymogen factor C, suggesting that 1H4 binds close to the active site and/or the substrate-binding site located in the serine protease domain (B chain) of factor C. On the other hand, 2C12 and 2A7 recognized, respectively, an epitope located in the heavy and the B chains, and inhibited LPS-mediated activation of factor C, but not alpha-chymotrypsin-mediated activation of factor C or factor C activity. Both F(ab')2 and Fab' fragments derived from 2C12 inhibited LPS-mediated activation in the same manner. These three mAbs did not bind with LPS, although a factor C-mAb complex was able to bind LPS, suggesting that the LPS-mediated activation of the zymogen factor C was induced through intermolecular interaction between the LPS-bound factor C molecules. The dissociation constants (Kd) for 1H4, 2C12, and 2A7 binding to factor C were determined as 1.9 x 10(-9), 0.6 x 10(-10), and 1.8 x 10(-10) M, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. From target to transcript. (36/346)

The currently accepted model of moult control in crustaceans relies entirely on the hypothesis that moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) repress ecdysteroid synthesis of the target tissue (Y-organ) only during intermoult, and that changes in synthesis and/or release of these neurohormones are central to moult control. To further refine this model, we investigated the biological activities of these neuropeptides in the crab Carcinus maenas, at the target tissue, receptor and cellular level by bioassay (inhibition of ecdysteroid synthesis), radioligand (receptor) binding assays, and second messenger (cGMP) assays, at defined stages of the moult cycle. To investigate possible moult cycle-related changes in neuropeptide biosynthesis, steady-state transcript levels of both neuropeptide mRNAs were measured by quantitative RT-PCR, and stored neuropeptide levels in the sinus gland were quantified during intermoult and premoult. The results show that the most important level of moult control lies within the signalling machinery of the target tissue, that expression and biosynthesis of both neuropeptides is constant during the moult cycle, and are not central to the currently accepted model of moult control.  (+info)

Mite allergen induces allergic dermatitis with concomitant neurogenic inflammation in mouse. (37/346)

Pathogenesis of atopic dermatitis involved the interactions of immune and neuroendocrine systems. Here we describe a mouse model for atopic dermatitis with concomitant neurogenic inflammation, by epicutaneous sensitization with a dust mite allergen. Allergen patching resulted in localized dermatitis characterized by pronounced epidermal hyperplasia and spongiosis, which was associated with infiltration of eosinophils and neutrophils, degranulated mast cells, CD4+ and CD8+ T cells, and dendritic cells. There was increased innervation of calcium gene related peptides and substance P in inflamed skins, interactions between nerve fibers and mast cells were seen, indicating the coexistence of neurogenic inflammation. Splenic T cells produced T helper 2-polarized cytokines in response to allergen stimulation in vitro, indicating systemic allergen sensitization. This is the first report of a mouse model of eczema, accompanied by neurogenic inflammation, which shows close resemblance to human allergic diseases. This work supports the notion that the skin is an important site for the initiation of primary allergen sensitization. Besides, this model may also be useful for study of other stress-associated neuroinflammatory skin disorders such as neurogenic pruritus and psoriasis.  (+info)

Transcriptional regulation of limulus factor C: repression of an NFkappaB motif modulates its responsiveness to bacterial lipopolysaccharide. (38/346)

Serine proteases play fundamental roles in invertebrate development, hemostasis, and innate immunity. This is exemplified by the limulus Factor C, which is a serine protease that binds a pathogen-associated molecule, lipopolysaccharide (LPS) to trigger a blood coagulation cascade. As a central molecule in the limulus innate immunity and hemostasis, Factor C gene expression has been detected in two major immune defense tissues, the amebocytes and hepatopancreas. Infection of the limulus with live Gram-negative bacteria induces a 2-3-fold increase in mRNA transcripts in both tissues. However, in vitro studies in Drosophila cell lines using Factor C promoter-reporter chimera DNA constructs, and site-directed mutagenesis of the promoter demonstrated that a proximal kappaB binding site, aided by an adjacent dorsal-like binding motif responds dramatically to LPS and dorsal transcription factor overexpression. Electrophoretic mobility shift assay further confirmed a strong interaction of the limulus kappaB motif with Rel proteins. However, deletion constructs of the Factor C promoter harboring different numbers of dorsal-like binding sites upstream of the kappaB motif as well as the electrophoretic mobility shift assay of these motifs with Rel proteins strongly suggest that the up-regulation of Factor C gene expression is attenuated during microbial challenge. The repression of the dramatic activation of this pathogen-responsive gene by LPS is probably effected via competition between the dorsal-like motifs over the proximal LPS-responsive kappaB unit, or through inhibition from the upstream repressive element(s), which accounts for the gene expression pattern observed in vivo. Our findings demonstrate that blood coagulation and innate immune response are integrated at the transcriptional level in this ancient organism, and that this LPS-responsive serine protease is controlled by an evolutionarily conserved NFkappaB pathway.  (+info)

Tandem repeats of Sushi3 peptide with enhanced LPS-binding and -neutralizing activities. (39/346)

Endotoxin, also known as lipopolysaccharide (LPS), is the major mediator of septic shock due to Gram-negative bacterial infection. Chemically synthesized S3 peptide, derived from Sushi3 domain of Factor C, which is the endotoxin-sensitive serine protease of the limulus coagulation cascade, was previously shown to bind and neutralize LPS activity. For large-scale production of this peptide and to mimick other pathogen-recognizing molecules, tandem multimers of the S3 gene were constructed and expressed in Escherichia coli. The recombinant tetramer of S3 (rS3-4mer) was purified by anion exchange and digested into monomers (rS3-1mer). Both the rS3-4mer and rS3-1mer were functionally analyzed for their ability to bind LPS by an ELISA-based method and surface plasmon resonance. The LAL inhibition and TNFalpha-release test showed that rS3-1 mer can neutralize the LPS activity as effectively as the synthetic S3 peptide, while rS3-4mer displays an enhanced inhibitory effect on LPS-induced activities. Both recombinant peptides exhibited low cytotoxicity and no haemolytic activity on human cells. This evidence suggests that the recombinant sushi peptides have potential use for the detection, removal of endotoxin and/or anti-endotoxin strategies.  (+info)

The squamous cell carcinoma antigen 2 inhibits the cysteine proteinase activity of a major mite allergen, Der p 1. (40/346)

The squamous cell carcinoma antigens 1 (SCCA1) and SCCA2 belong to the ovalbumin-serpin family. Although SCCA1 and SCCA2 are closely homologous, these two molecules have distinct properties; SCCA1 inhibits cysteine proteinases such as cathepsin K, L, and S, whereas SCCA2 inhibits serine proteinases such as cathepsin G and human mast cell chymase. Although several intrinsic target proteinases for SCCA1 and SCCA2 have been found, the biological roles of SCCA1 and SCCA2 remain unknown. A mite allergen, Der p 1, is one of the most immunodominant allergens and also acts as a cysteine proteinase probably involved in the pathogenesis of allergic diseases. We have recently shown that both SCCA1 and SCCA2 are induced by two related Th2-type cytokines, IL-4 and IL-13, in bronchial epithelial cells and that SCCA expression is augmented in bronchial asthma patients. In this study, we explored the possibility that SCCA proteins target Der p 1, and it turned out that SCCA2, but not SCCA1, inhibited the catalytic activities of Der p 1. We furthermore analyzed the inhibitory mechanism of SCCA2 on Der p 1. SCCA2 contributed the suicide substrate-like mechanism without formation of a covalent complex, causing irreversible impairment of the catalytic activity of Der p 1, as SCCA1 does on papain. In addition, resistance to cleavage by Der p 1 also contributed to the inhibitory mechanism of SCCA2. These results suggest that SCCA2 acts as a cross-class serpin targeting an extrinsic cysteine proteinase derived from house dust mites and that it may have a protective role against biological reactions caused by mites.  (+info)