The heterogeneity of vascular findings in the kidneys of patients with benign essential hypertension. (49/2323)

As the interlobular arteries of the ageing kidney progressively accumulate intimal fibroplasia, these fibroplastic changes appear to introduce strictures upon the interlobular arteries. These strictures are expected to generate nephron heterogeneity, which is a uniquely disturbed setting peculiarly suited to sustaining both high and low renin forms of hypertension. Fibroplastic renovasculopathy accumulates with age at varying rates in different human populations, and these rates closely parallel the rise of blood pressure with age, as documented by community surveys. Here, I introduce the expression type 1 for hypertension in subjects with mild or minimal renovasculopathy, and type 2 for those with severe vasculopathy. Data reviewed here imply that variations in prevailing blood pressure levels between populations can be attributed entirely, or almost entirely, to type 2 hypertension. No practical test is available to detect nephron heterogeneity clinically. Tests for this purpose have not been and are not now in development. The reason for this deficiency is probably the general lack of suspicion regarding the existence of this pathological entity. Once the entity becomes the target of attention, a variety of tests for measuring its severity in clinical patients should follow readily.  (+info)

Enhanced release of prostaglandins contributes to flow-induced arteriolar dilation in eNOS knockout mice. (50/2323)

Nitric oxide and prostaglandins were shown to contribute to the endothelial mediation of flow-induced dilation of skeletal muscle arterioles of rats. Thus, we hypothesized that flow-induced dilation and its mediation are altered in gracilis muscle arterioles of mice deficient in the gene for endothelial nitric oxide synthase (eNOS-KO) compared with control wild-type (WT) mice. Gracilis muscle arterioles ( approximately 80 micrometer) of male mice were isolated, then cannulated and pressurized in a vessel chamber. The increases in diameter elicited by increases in perfusate flow from 0 to 10 microq/min were similar in arterioles from eNOS-KO (n=28) and WT (n=22) mice ( approximately 20 micrometer at 10 microL/min flow). Removal of the endothelium eliminated flow-induced dilations in vessels of both strains of mice. N(omega)-nitro-L-arginine (L-NNA, 10(-4) mol/L) significantly inhibited flow-induced dilation in arterioles of WT mice by approximately 51% but had no effect on responses of arterioles from eNOS-KO mice. Indomethacin (INDO, 10(-5) mol/L) inhibited flow-induced dilation of WT mice by approximately 49%, whereas it completely abolished this response in arterioles of eNOS-KO mice. Simultaneous administration of INDO and L-NNA eliminated flow-induced responses in arterioles of WT mice. Dilations to carbaprostacyclin were similar at concentrations of 10(-8) and 3x10(-8) mol/L but decreased significantly at 10(-7) mol/L in arterioles of eNOS-KO compared with those of WT mice. These findings demonstrate that, despite the lack of nitric oxide mediation, flow-induced dilation is close to normal in arterioles of eNOS-KO mice because of an enhanced release of endothelial dilator prostaglandins and suggest that this vascular adaptation may contribute to the regulation of peripheral resistance in eNOS-KO mice.  (+info)

Direct effects of alpha1- and alpha2-adrenergic agonists on spinal and cerebral pial vessels in dogs. (51/2323)

BACKGROUND: The effects of adrenergic agonists, often used as local anesthetic additives or spinal analgesics, on spinal vessels have not been firmly established. The authors investigated the effects of alpha2- and alpha1-adrenergic agonists on spinal and cerebral pial vessels in vivo. METHODS: Pentobarbital-anesthetized dogs (n = 28) were prepared for measurement of spinal pial-vessel diameter in a spinal-window preparation. The authors applied dexmedetomidine, clonidine, phenylephrine, or epinephrine in three different concentrations (0.5, 5.0, and 50 microg/ml; [2.1, 1.9, 2.5, and 2.3] x [10(-6), 10(-5), and 10(-4)] M, respectively) under the window (one drug in each dog) and measured spinal pial arteriolar and venular diameters in a sequential manner. To enable the comparison of their effects on cerebral vessels, the authors also administered these drugs under a cranial window. RESULTS: On topical administration, each drug constricted spinal pial arterioles in a concentration-dependent manner. Phenylephrine and epinephrine induced a significantly larger arteriolar constriction than dexmedetomidine or clonidine at 5 microg/ml (8%, 11%, 0%, and 1%, respectively). Spinal pial venules tended to be less constricted than arterioles. In cerebral arterioles, greater constrictions were induced by dexmedetomidine and clonidine than those induced by phenylephrine and epinephrine (14%, 8%, 0%, and 1%, respectively). Cerebral pial venules tended to exhibit larger constrictions than cerebral arterioles (unlike in spinal vessels). CONCLUSION: Dexmedetomidine and clonidine constricted spinal vessels in a concentration-dependent manner, but such vasoconstrictions were smaller than those induced by phenylephrine and epinephrine.  (+info)

Dexamethasone attenuates acute macromolecular efflux increase evoked by smokeless tobacco extract. (52/2323)

The purpose of this study was to determine whether dexamethasone attenuates the acute increase in macromolecular efflux from the oral mucosa elicited by an aqueous extract of smokeless tobacco (STE) in vivo, and, if so, whether this response is specific. Using intravital microscopy, we found that 20-min suffusion of STE elicited significant, concentration-related leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated the bradykinin-induced leaky site formation and the increase in clearance of FITC-dextran from the cheek pouch. However, it had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on baseline arteriolar diameter and on bradykinin-induced vasodilation in the cheek pouch. Collectively, these data indicate that dexamethasone attenuates, in a specific fashion, the acute increase in macromolecular efflux from the in situ oral mucosa evoked by short-term suffusion of STE. We suggest that corticosteroids mitigate acute oral mucosa inflammation elicited by smokeless tobacco.  (+info)

Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyperhomocysteinemia. (53/2323)

In humans, increased plasma homocysteine (Hcy) has been shown to be correlated with occlusive arterial diseases and atherosclerosis. Studies of isolated conductance vessels of experimental animals suggest that Hcy may interfere with local vasoregulatory mechanisms, yet the effect of hyperhomocysteinemia (HHcy) on the function of microvessels, such as skeletal muscle arterioles, has not been investigated. Male Wistar rats were divided into 2 groups: control rats (C; plasma Hcy, 7.1+/-0.3 micromol/L; n=25), and rats made HHcy by 1 g/kg body weight daily intake of methionine in the drinking water for 4 weeks (plasma Hcy, 23.6+/-2.9 micromol/L; P<0.01 versus C; n=25). First-order arterioles ( approximately 130 micrometer in diameter) were isolated from gracilis muscle, cannulated, and pressurized (80 mm Hg, no-flow conditions). Changes in diameter were observed by videomicroscopy. Arteriolar constrictions to norepinephrine (NE; 3x10(-7) mol/L) were significantly (P<0.01) greater in HHcy compared with C rats (C, 37.7+/-4.9%; HHcy, 59.5+/-5. 2%). Removal of the endothelium (-E) augmented NE-induced constrictions only in arterioles from C rats, whereas it had no effect on responses of arterioles from HHcy rats (C-E, 55.9+/-6.9%; HHcy-E, 56.5+/-7.0%). Dilations to cumulative doses of acetylcholine (ACh; 10(-8) mol/L) were significantly reduced in arterioles from HHcy rats (C, 64.0+/-5.2%; HHcy, 24.1+/-6.8%). Inhibition of nitric oxide (NO) synthesis with N(omega)-nitro-L-arginine (L-NNA; 10(-4) mol/L) significantly decreased ACh-induced dilations of C arterioles, whereas it did not affect HHcy arterioles. Similar alterations were found in arteriolar dilations to histamine, another known NO-dependent agonist. Endothelium-independent dilations to the NO donor sodium nitroprusside were not different in arterioles from C and HHcy rats, either in the presence or absence of L-NNA. Presence of superoxide dismutase and catalase (scavenger of reactive oxygen metabolites) did not affect HHcy-induced alterations in the ACh response. We conclude that hyperhomocysteinemia reduces rat skeletal muscle arteriolar dilations in response to ACh and histamine, and enhances constrictions to NE, alterations that are likely to be caused by the reduced mediation of these responses by NO. The reduced activity of NO in arterioles may contribute to the microvascular impairment described in HHcy.  (+info)

Different microcirculatory and interstitial matrix patterns in idiopathic dilated cardiomyopathy and Chagas' disease: a three dimensional confocal microscopy study. (54/2323)

OBJECTIVE: To analyse the morphological aspects of the extracellular matrix and microcirculation to clarify whether chronic Chagas' cardiopathy (CCC) is an accurate model to study the pathogenesis of idiopathic dilated cardiomyopathy (IDCM). DESIGN: Thick histological myocardial sections were prepared to analyse collagen, and microcirculation was examined during confocal laser and light microscopy. SETTING: The specimens were prepared at the pathology service of the Heart Institute of Sao Paulo, Brazil. PATIENTS: Nine control hearts, eight IDCM hearts, and 10 CCC hearts were studied after necropsy. MAIN OUTCOME MEASURES: The number of collagen struts per 100x field, the area of fibrosis (%), and the diameters of arterioles and capillaries were measured in each heart to establish outcome. RESULTS: A smaller number (mean (SD)) of collagen struts was seen in the hearts in the IDCM group (9.1 (4.1)) than in the control (22.4 (3.2)) (p < 0.05) or CCC (15.7 (7.4)) (p > 0.05) groups. Fibrosis was greater in the CCC hearts (13.8 (10.5)%) than in the IDCM hearts (5.9 (6.6)%) (p > 0.05). Major increases in arteriole (65.4 (9.9) microm) and capillary (9.9 (1.7) microm) diameters were seen in the CCC hearts but not in the IDCM hearts (arteriole diameter 40.3 (7.9) microm; capillary diameter 7.9 (1.3) microm). CONCLUSIONS: Hearts demonstrating CCC and IDCM present different extracellular and microvessel alterations. This suggests that distinct pathogenic mechanisms are responsible for each condition and that CCC is not an effective model to study IDCM.  (+info)

Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. (55/2323)

Previous studies have demonstrated an important role for the cytochrome P450 (CYT-P450) pathway in afferent arteriole autoregulatory responses but the involvement of specific pathways remains unknown. Experiments were performed to determine the role of CYT-P450 epoxygenase and hydroxylase pathways in pressure mediated preglomerular autoregulatory responses. Afferent arteriolar diameter was measured as renal perfusion pressure was increased from 80-160 mmHg. Afferent arteriolar diameter averaged 19+/-2 microm at a renal perfusion pressure of 80 mmHg and decreased by 15+/-2% when pressure was increased to 160 mmHg. Inhibition of the epoxygenase pathway with 6-(2-proparglyloxyphenyl)hexanoic acid (PPOH), enhanced the microvascular response to increasing renal perfusion pressure. In the presence of 50 microM PPOH, afferent arteriolar diameter decreased by 29+/-4% when pressure was increased from 80-160 mmHg. Likewise, the sulphonimide derivative of PPOH, N-methylsulphonyl-6-(2-proparglyloxyphenyl) hexanamide (MS-PPOH, 50 microM), enhanced the afferent arteriolar response to increasing renal perfusion pressure. In contrast, the selective CYT-P450 hydroxylase inhibitor, N-methylsulphonyl-12,12-dibromododec-11-enamide (DDMS) attenuated the vascular response to increasing renal perfusion pressure. In the pressure of 25 microM DDMS, afferent arteriolar diameter decreased by 4+/-2% when pressure was increased from 80-160 mmHg. These results suggest that CYT-P450 metabolites of the epoxygenase pathway alter afferent arteriolar responsiveness and thereby modify the ability of the preglomerular vasculature to autoregulate renal blood flow. Additionally, these results provide further support to the concept that a metabolite of the hydroxylase pathway is an integral component of the afferent arteriolar response to elevations in perfusion pressure.  (+info)

Effects of melatonin on rat pial arteriolar diameter in vivo. (56/2323)

1. Based on our finding that melatonin decreased the lower limit of cerebral blood flow autoregulation in rat, we previously suggested that melatonin constricts cerebral arterioles. The goal of this study was to demonstrate this vasoconstrictor action and investigate the mechanisms involved. 2. The effects of cumulative doses of melatonin (10-10 to 10-6 M) were examined in cerebral arterioles (30 - 50 microM) of male Wistar rats using an open skull preparation. Cerebral arterioles were exposed to two doses of melatonin (3x10-9 and 3x10-8 M) in the absence and presence of the mt1 and/or MT2 receptor antagonist, luzindole (2x10-6 M) and the Ca2+-activated K+ (BKCa) channel blocker, tetraethylammonium (TEA+, 10(-4) M). The effect of L-nitro arginine methyl ester (L-NAME, 10-8 M) was examined on arterioles after TEA+ superfusion. Cerebral arterioles were also exposed to the BKCa activator, NS1619 (10(-5) M), and to sodium nitroprusside (SNP, 10-8 M) in the absence and presence of melatonin (3x10-8 M). 3. Melatonin induced a dose-dependent constriction with an EC50 of 3.0+/-0.1 nM and a maximal constriction of -15+/(-1%). Luzindole abolished melatonin-induced vasoconstriction. TEA+ induced significant vasoconstriction (-10+/(-2%). No additional vasoconstriction was observed when melatonin was added to the aCSF in presence of TEA+, whereas L-NAME still induced vasoconstriction (-10+/(-1%). NS1619 induced vasodilatation (+11+/(-1%) which was 50% less in presence of melatonin. Vasodilatation induced by SNP (+12+/(-2%) was not diminished by melatonin. 4. Melatonin directly constricts small diameter cerebral arterioles in rats. This vasoconstrictor effect is mediated by inhibition of BKCa channels following activation of mt1 and/or MT2 receptors.  (+info)