DA-9601, Artemisia asiatica herbal extract, ameliorates airway inflammation of allergic asthma in mice. (41/155)

We previously reported that DA-9601, ethanol herbal extract of Artemisia asiatica, inhibited histamine and leukotriene releases in guinea pig lung mast cells activated with specific antigen/antibody reaction. This study aimed to evaluate the inhibitory effect of DA-9601 on the OVA-induced airway inflammation in allergic asthma mouse model. BALB/c mice were sensitized and challenged with OVA. DA-9601 was administered orally 1 h before every local OVA-challenge. OVA-specific serum IgE was measured by ELISA, recruitment of inflammatory cells in BAL fluids and lung tissues by Diff-Quik and H&E staining, respectively, the expressions of CD40, CD40L and VCAM-1 by immunohistochemistry, goblet cell hyperplasia by PAS staining, activities of MMPs by gelatin zymography, expressions of mRNA and proteins of cytokines by RT-PCR and ELISA, activities of MAP kinases by western blot, and activity of NF-KappaB by EMSA. DA-9601 reduced IgE level, recruitment of inflammatory cells into the BAL fluid and lung tissues, expressions of CD40, CD40L and VCAM-1 molecules, goblet cell hyperplasia, MMPs activity, expressions of mRNA and productions of various cytokines, activities of MAP kinases and NK-KappaB increased from OVA-challenged mice. These data suggest that DA-9601 may be developed as a clinical therapeutic agent in allergic diseases due to suppressing the airway allergic inflammation via regulation of various cellular molecules expressed by MAP kinases/NF-KappaB pathway.  (+info)

Hypoglycaemic effect of Artemisia sphaerocephala Krasch seed polysaccharide in alloxan-induced diabetic rats. (42/155)

The purpose of this study was to examine the hypoglycaemic activity of a new polysaccharide extracted from seed polysaccharide (ASP) was administered orally for 4 weeks and the blood glucose changes were determined in fasted rats. Plasma insulin, cholesterol and triglycerides levels were also determined. The ASP at a dose of 200 mg/kg body weight (bw) produced a significant decrease in blood glucose levels in diabetic rats (P <0.01). In the other hand, the effect of the ASP on the plasma cholesterol were also significant in diabetic rats (P <0.05). Furthermore, there was a significant effect of ASP on plasma triglycerides in both normal and diabetic groups. In order to characterise the active principle(s), which could be responsible for the therapeutic effect, a preliminary phytochemical analysis of the ASP was performed. The monosaccharides of ASP were composed of L-Ara, D-Xyl, D-Lyx, D-Man, D-Glc, D-Gal. Their molar proportions were 1, 4.98, 1.69, 27.86, 3.76 and 13.92, respectively.  (+info)

Farnesyl diphosphate synthase: the art of compromise between substrate selectivity and stereoselectivity. (43/155)

Farnesyl diphosphate (FPP) synthase catalyzes the consecutive head-to-tail condensations of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to give (E,E)-FPP (C15). The enzyme belongs to a genetically distinct family of chain elongation enzymes that install E-double bonds during each addition of a five-carbon isoprene unit. Analysis of the C10 and C15 products from incubations with avian FPP synthase reveals that small amounts of neryl diphosphate (Z-C10) and (Z,E)-FPP are formed along with the E-isomers during the C5 --> C10 and C10 --> C15 reactions. Similar results were obtained for FPP synthase from Escherichia coli, Artemisia tridentata (sage brush), Pyrococcus furiosus, and Methanobacter thermautotrophicus and for GPP and FPP synthesized in vivo by E. coli FPP synthase. When (R)-[2-2H]IPP was a substrate for chain elongation, no deuterium was found in the chain elongation products. In contrast, the deuterium in (S)-[2-2H]IPP was incorporated into all of the products. Thus, the pro-R hydrogen at C2 of IPP is lost when the E- and Z-double bond isomers are formed. The synthesis of Z-double bond isomers by FPP synthase during chain elongation is unexpected for a highly evolved enzyme and probably reflects a compromise between optimizing double bond stereoselectivity and the need to exclude DMAPP from the IPP binding site.  (+info)

Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. (44/155)

Artemisinin and its derivatives are currently recommended as first-line antimalarials in regions where Plasmodium falciparum is resistant to traditional drugs. The cytotoxic activity of these endoperoxides toward rapidly dividing human carcinoma cells and cell lines has been reported, and it is hypothesized that activation of the endoperoxide bridge by an iron(II) species, to form C-centered radicals, is essential for cytotoxicity. The studies described here have utilized artemisinin derivatives, dihydroartemisinin, 10beta-(p-bromophenoxy)dihydroartemisinin, and 10beta-(p-fluorophenoxy)dihydroartemisinin, to determine the chemistry of endoperoxide bridge activation to reactive intermediates responsible for initiating cell death and to elucidate the molecular mechanism of cell death. These studies have demonstrated the selective cytotoxic activity of the endoperoxides toward leukemia cell lines (HL-60 and Jurkat) over quiescent peripheral blood mononuclear cells. Deoxy-10beta-(p-fluorophenoxy)dihydroartemisinin, which lacks the endoperoxide bridge, was 50- and 130-fold less active in HL-60 and Jurkat cells, respectively, confirming the importance of this functional group for cytotoxicity. We have shown that chemical activation is responsible for cytotoxicity by using liquid chromatography-mass spectrometry analysis to monitor endoperoxide activation by measurement of a stable rearrangement product of endoperoxide-derived radicals, which was formed in sensitive HL-60 cells but not in insensitive peripheral blood mononuclear cells. In HL-60 cells the endoperoxides induce caspase-dependent apoptotic cell death characterized by concentration- and time-dependent mitochondrial membrane depolarization, activation of caspases-3 and -7, sub-G(0)/G(1) DNA formation, and attenuation by benzyloxycarbonyl-VAD-fluoromethyl ketone, a caspase inhibitor. Overall, these results indicate that endoperoxide-induced cell death is a consequence of activation of the endoperoxide bridge to radical species, which triggers caspase-dependent apoptosis.  (+info)

Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995-2004. (45/155)

BACKGROUND: Artemisia species pollen represents a major cause of allergy in Central Europe. Variations in the pollen season, the influence of climate variables and the prevalence of pollinosis to it were analyzed in Poznan, in western Poland between 1995 and 2004. METHODS: A Hirst volumetric spore trap was used for atmospheric sampling. Pollination date trend analysis and Spearman correlation tests were performed. Skin prick tests (SPT) and allergen specific immunoglobulin (lg)E antibody measurements were performed in 676 and 524 patients, respectively. RESULTS: The Artemisia species pollen season grew longer due to a clear advance in the starting day and only a slightly earlier end point; the peak day also came slightly earlier. Rainfall in the first fortnight of July highly influenced pollen season severity. Temperature was directly correlated with daily Artemisia species pollen levels; relative humidity was inversely correlated. Twelve percent of patients had a positive SPT reaction to Artemisia species. Their symptoms were rhinitis and conjunctivitis (15%), atopic dermatitis (15%), chronic urticaria (14.3%), bronchial asthma (2.4%), and facial and disseminated dermatitis (1.3%). Elevated specific IgE concentrations were detected in the sera of 10.1% of patients. CONCLUSIONS: Artemisia species pollen is an important cause of pollinosis in western Poland. Pollen season intensity is highly influenced by rainfall in the previous weeks. Trends towards earlier season starts and longer duration, possibly caused by climate change, may have an impact on the allergic population.  (+info)

Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. (46/155)

The carbon skeletons of over 55,000 naturally occurring isoprenoid compounds are constructed from four fundamental coupling reactions: chain elongation, cyclopropanation, branching, and cyclobutanation. Enzymes that catalyze chain elongation and cyclopropanation are well studied, whereas those that catalyze branching and cyclobutanation are unknown. We have catalyzed the four reactions with chimeric proteins generated by replacing segments of a chain-elongation enzyme with corresponding sequences from a cyclopropanation enzyme. Stereochemical and mechanistic considerations suggest that the four coupling enzymes could have evolved from a common ancestor through relatively small changes in the catalytic site.  (+info)

Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. (47/155)

BACKGROUND AND AIMS: Repair of damage to DNA of seed embryos sustained during long periods of quiescence under dry desert conditions is important for subsequent germination. The possibility that repair of embryo DNA can be facilitated by small amounts of water derived from dew temporarily captured at night by pectinaceous surface pellicles was tested. These pellicles are secreted during early seed development and form mucilage when hydrated. METHODS: Seeds of Artemisia sphaerocephala and Artemisia ordosica were collected from a sandy desert. Their embryos were damaged by gamma radiation to induce a standard level of DNA damage. The treated seeds were then exposed to nocturnal dew deposition on the surface of soil in the Negev desert highlands. The pellicles were removed from some seeds and left intact on others to test the ability of mucilage to support repair of the damaged DNA when night-time humidity and temperature favoured dew formation. Repair was assessed from fragmentation patterns of extracted DNA on agarose gels. KEY RESULTS: For A. sphaerocephala, which has thick seed pellicles, DNA repair occurred in seeds with intact pellicles after 50 min of cumulative night dew formation, but not in seeds from which the pellicles had been removed. For A. ordosica, which has thin seed pellicles, DNA repair took at least 510 min of cumulative night dewing to achieve partial recovery of DNA integrity. The mucilage has the ability to rehydrate after daytime dehydration. CONCLUSIONS: The ability of seeds to develop a mucilaginous layer when wetted by night-time dew, and to repair their DNA under these conditions, appear to be mechanisms that help maintain seed viability under harsh desert conditions.  (+info)

Exotic food allergy: anaphylactic reaction to lychee. (48/155)

There are very few reports on allergic reactions to lychee fruit in the literature. We describe the case of a 26-year-old man who developed pruritus, generalized urticaria, and severe angioedema of his lips and tongue with dyspnea within 15 minutes after lychee fruit intake. Although we found no lychee-specific immunoglobulin E antibodies, a basophil activation test (BAT) and a cellular antigen stimulation test (CAST) to lychee were both positive, as was a prick-to-prick test with fresh lychee fruit. The patient also suffered from an oral food allergy syndrome to parsley and was sensitized to mugwort but not to latex or profilin. BAT and CAST are helpful tools in the diagnostic workup for exotic food allergy. Mugwort is suggested as the allergen responsible for,the cross-reactivity presented by this patient, as he had no sensitization to latex or profilin.  (+info)