The regulation of aromatase activity in breast fibroblasts: the role of interleukin-6 and prostaglandin E2. (41/1297)

Prostaglandin E2 (PGE2) and cytokines, such as interleukin-6 (IL-6) or tumour necrosis factor a (TNFalpha) can regulate aromatase activity. In the present study we have compared their abilities to stimulate aromatase activity in fibroblasts derived from 'normal' breast adipose tissue proximal to a tumour or breast tumours. PGE2, TNFalpha and IL-6 plus its soluble receptor (IL-6sR) all increased aromatase activity in these cells. Basal aromatase activity and the degree of aromatase stimulation by these factors were greater in fibroblasts derived from 'normal' breast tissue than from breast tumours. The ability of IL-6+IL-6sR to increase aromatase activity was only marginally reduced by the PG synthesis inhibitor, indomethacin, indicating that IL-6+IL-6sR does not appear to act via induction of PG synthesis. The ability of PGE2 to stimulate aromatase activity in fibroblasts derived from 'normal' breast tissue was potentiated by IL-6sR suggesting that PGE2 may act via induction of IL-6. This was confirmed by measurement of IL-6 in conditioned medium collected from these cells. A significant increase in IL-6 concentrations was detected in conditioned medium collected from cells treated with PGE2. It is concluded that in some fibroblasts PGE2 may exert part of its regulatory effect on breast tissue aromatase activity via induction of IL-6.  (+info)

Breast tumor aromatase: functional role and transcriptional regulation. (42/1297)

Aromatase has been shown to be expressed at a higher level in human breast cancer tissue than in normal breast tissue, by means of enzyme activity measurement, immunocytochemistry, and RT-PCR analysis. Cell culture including MCF-7 breast cancer cells, animal experiments using aromatase-transfected breast cancer cells, and transgenic mouse studies have demonstrated that estrogen production in situ plays a more important role than circulating estrogens in breast tumor promotion. In addition, tumor aromatase is believed to be able to stimulate breast cancer growth through both autocrine and paracrine pathways, as demonstrated by a three-dimensional cell culture study. RT-PCR and gene transcriptional studies have revealed that the aromatase promoter is switched from a glucocorticoid-stimulated promoter, I.4, in normal tissue to cAMP-stimulated promoters, I.3 and II, in cancerous tissue. Recently, we identified and characterized a cAMP-responsive element (CREaro) upstream from promoter I.3 by DNA deletion and mutational analyses. Our results from promoter functional analysis also demonstrated an interaction between the CREaro and the silencer element (S1) that was identified previously in our laboratory. In the presence of cAMP, the positive regulatory CREaro can overcome the action of the silencer on the function of promoter I.3. On the basis of results generated from our own and other laboratories, we propose that, in normal breast adipose stromal cells and fibroblasts, aromatase expression is driven by promoter I.4 (glucocorticoid dependent), and that the action of promoters I.3 and II is suppressed by the silencer negative regulatory element. However, in cancer cells and surrounding adipose stromal cells, the cAMP level increases, and aromatase promoters are switched to cAMP-dependent promoters - I.3 and II. Furthermore, we applied the yeast one-hybrid screening method to search for proteins interacting with the silencer element, S1. The major protein identified was ERRalpha-1; however, SF-1, which is present in the ovary, is not detected in breast cancer tissue. Using a reporter plasmid with the aromatase genomic fragment containing promoter I.3 and S1, in breast cancer SK-BR-3 cells, ERRalpha-1 was found to have a positive regulatory function. It is believed that the silencer element in the human aromatase gene may function differently in different tissues, as a result of distinct expression patterns of transcription factors.  (+info)

Aromatase within the breast. (43/1297)

In situ aromatization and enhanced uptake of estradiol from plasma are two potential mechanisms for maintenance of high concentrations of estradiol found in breast tumors of postmenopausal patients. To test the relative importance of these two mechanisms, a nude mouse model was established by inoculating aromatase (A+) and/or sham (A-) transfected MCF-7 cells into ovariectomized mice. Postmenopausal hormonal status was simulated by providing estradiol Silastic implants which clamped plasma estradiol levels at 5-20 pg/ml. We demonstrated that in situ aromatization rather than the uptake mechanism is the key determinant of tumor estradiol levels and tumor growth rate under conditions reflecting the postmenopausal state. The importance of intratumoral aromatase was also suggested by the findings that long-term estrogen deprivation increases sensitivity to estradiol and enhances aromatase activity in MCF-7 cells. The results of our in vivo and in vitro studies suggest that complete blockade of in situ aromatization in the breast would provide added benefit to postmenopausal breast cancer patients, especially those who relapse from antiestrogen therapy.  (+info)

Aromatase and breast cancer susceptibility. (44/1297)

Based on experimental and epidemiological evidence it is hypothesized that estrogen increases breast cancer risk by increasing mitotic activity in breast epithelial cells. Aromatase is crucial to the biosynthesis of estrogens and may therefore play a role in breast cancer development. Supporting data for an etiological role of aromatase in breast tumor biology are several-fold. First, the association between weight and postmenopausal breast cancer risk may be mediated by aromatase. Secondly, a pilot study found a higher aromatase expression in normal breast adipose tissue from breast cancer cases as opposed to healthy women. Thirdly, experimental data in animals suggest that aromatase activity predisposes mammary tissue to preneoplastic and neoplastic changes. In a multiethnic cohort study conducted in Los Angeles and on Hawaii we investigated (i) whether the plasma estrone to androstenedione (E1/A) ratio in different ethnic groups was associated with ethnic differences in breast cancer incidence, and (ii) whether genetic variation in the CYP19 gene encoding the P450 aromatase protein was associated with breast cancer risk. The age- and weight-adjusted ethnic specific E1/A ratios x 100 among women without oophorectomy were 7.92 in African-Americans, 8.22 in Japanese, 10.73 in Latinas and 9.29 in non-Latina Whites (P=0.09). The high E1/A ratio in Latina women was not associated with a high breast cancer incidence; in fact Latina women had the lowest breast cancer incidence in the cohort observed so far. We found no consistent association of an intronic (TTTA)n repeat polymorphism with breast cancer risk in different ethnic groups. This polymorphism was not associated with differences in the plasma E1/A ratio in a way that would predict its functional relevance. We describe a newly identified TTC deletion in intron 5 of the CYP19 gene that is associated with the (TTTA)n repeat polymorphism. Neither this polymorphism, nor a polymorphism at codon 264 in exon VII of the CYP19 gene, was associated with breast cancer. We did not identify any genetic variation in exon VIII in 54 African-American subjects. We identified rare genetic variants of unknown functional relevance in the promoter 1.4 of the CYP19 gene in 3 out of 24 Latina women. Further investigation into the role of aromatase in breast cancer etiology is important, given that the potential use of aromatase inhibitors as breast cancer chemopreventives depends on these results.  (+info)

Biology of aromatase inhibitors: pharmacology/endocrinology within the breast. (45/1297)

Both mammary adipose tissue and breast cancers have the ability to aromatize androgens into oestrogens. Such potential may maintain the growth of hormone-dependent tumours. It has therefore been important to determine the effects of new aromatase inhibitors such as formestane, exemestane, anastrozole and letrozole on oestrogen biosynthesis and concentrations of endogenous hormones within the breast. Studies based on in vitro incubations of breast cancer and cultures of mammary adipose tissue fibroblasts demonstrate that these drugs are highly effective inhibitors, with IC50 values ranging between 1 and 50 nM (although the relative efficacy varies between tissues and test systems). Despite this potential, in vitro incubations of breast tissues from patients treated with type II inhibitors such as aminoglutethimide and letrozole can display paradoxically high aromatase activity; this appears to be caused by the reversible nature of the inhibition, coupled with induction/stabilization of the aromatase enzyme. To assess in situ effects within the breast, postmenopausal women with large primary breast cancers have been treated neoadjuvantly with aromatase inhibitors using a protocol that included (i) breast biopsy before treatment, (ii) definitive surgery after 3 months of treatment and (iii) infusion of [3H]androstenedione and [14C]oestrone in the 18 h immediately before biopsy and surgery. With this study design, it has been shown that drugs such as letrozole profoundly inhibit in situ aromatase activity and reduce endogenous oestrogens within the breast.  (+info)

Effects of aromatase inhibitors on the pathobiology of the human breast, endometrial and ovarian carcinoma. (46/1297)

It is very important to examine the influence of inhibition of in situ estrogen production on the pathobiology of human sex steroid-dependent tumors in order to understand the clinical effects of aromatase inhibitors. We have examined the biological changes before and after aromatase inhibitor treatment in vitro (endometrial and ovarian cancer) and in vivo (breast cancer). First, we analyzed these changes using histoculture of 15 human endometrial cancers and 9 ovarian cancers. Five of the fifteen endometrial cancers and four of the nine ovarian cancers demonstrated decreased [3H]thymidine uptake or Ki67 labeling index after 14alpha-hydroxy-4-androstene-3,6,17-trione (NKS01) treatment. In ovarian cancer cases, the responsive cases tended to be associated with higher aromatase and estrogen receptor alpha (ER) expression compared with the other cases but this was not seen in the endometrial cancer cases. There were no changes in ER and aromatase expression before and after NKS01 treatment in either ovarian or endometrial cancer cases. We then studied the same primary human breast tumors before and after aminoglutethimide (AMG, n=3) and 4-hydroxyandrostenedione (4-OHA, n=3) treatment. Tumor aromatase activity increased in 3 cases and decreased or was unchanged in 3 cases but aromatase immunoreactivity in stroma and adipocytes was unaltered in 5 cases. There were no changes in the ER labeling index before or after treatment. Five of the six cases including the responsive cases tended to be associated with decreased cell proliferation or Ki67 expression and increased apoptosis when examined by the TUNEL method. These results indicate that aromatase inhibitors may exert their effects on human breast and other cancers through decreasing proliferation and increasing apoptosis, possibly without altering ER status.  (+info)

Aromatase inhibitors and their antitumor effects in model systems. (47/1297)

The potential of aromatase (estrogen synthetase) within the breast to provide a significant source of estrogen mediating tumor proliferation is suggested by studies reporting 4- to 6-fold higher estrogen levels in tumors than in plasma of postmenopausal patients with breast cancer. Recent studies in our laboratory have identified aromatase and its mRNA in tumor epithelial cells using immunocytochemistry and in situ hybridization. In addition, significant aromatase activity, which was stimulated 7-fold by dexamethasone, was measured in metastatic cells isolated from a breast cancer patient. Increase in proliferation, as measured by proliferating cell nuclear antigen immunostaining in tumor sections and by thymidine incorporation into DNA in response to testosterone, was observed in histocultures of breast cancer samples. This latter effect could be inhibited by 4-hydroxyandrostenedione. These results imply that intratumoral aromatase has functional significance and may be an important target for successful inhibitor treatment of breast cancer patients. To investigate treatment strategies with aromatase inhibitors and antiestrogens, we developed an intratumoral aromatase model to simulate the hormone responsive postmenopausal breast cancer patient. Tumors of estrogen receptor positive human breast carcinoma cells (MCF-7) transfected with the human aromatase gene are grown in ovariectomized nude mice. These cells synthesize sufficient estrogen to stimulate tumor formation. We have utilized this model to investigate the effects on tumor growth of the antiestrogens, tamoxifen and ICI 182780, and the aromatase inhibitors, letrozole and anastrozole (arimidex), alone and in combination. Both the aromatase inhibitors and the antiestrogens were effective in suppressing tumor growth. However, letrozole was significantly more effective than the antiestrogens. When the aromatase inhibitors were combined with the antiestrogen, tamoxifen, tumor growth was suppressed to about the same extent as with the aromatase inhibitors alone. Furthermore, the results do not suggest any benefit from combining tamoxifen with the pure antiestrogen, ICI 182780. Thus sequential use of these agents is likely to be more advantageous to the patient in terms of longer duration of effective treatment.  (+info)

Aromatase inhibitors and enzyme stability. (48/1297)

The effects of two steroidal (4-hydroxyandrostenedione and atamestane) and three non-steroidal (fadrozole, vorozole, and pentrozole) aromatase inhibitors on the levels of aromatase mRNA and protein were examined in vitro and in vivo. Immunocytochemistry revealed increased quantities of immunoreactive aromatase in human choriocarcinoma-derived JEG-3 cells in response to pretreatment with the non-steroidal inhibitors. To elucidate this effect in detail, aromatase protein in JEG-3 cells after treatment with various inhibitors was quantified using an enzyme-linked immunosorbent assay (ELISA). A time-dependent increase in aromatase protein in the cells was observed with all the aromatase inhibitors except 4-hydroxyandrostenedione, whereas aromatase mRNA levels in the cells remained unchanged during the inhibitor treatment. The three non-steroidal agents caused an approximately fourfold increase in aromatase protein in the cells 24 h after the treatment, as compared with untreated controls. The increase in aromatase protein in the cells was not blocked by treatment with cycloheximide, an inhibitor of protein synthesis. The inhibitors also appeared to block the rapid degradation observed in JEG-3 cells after induction by forskolin. In vivo, daily injection of the inhibitors into adult female mice caused increases in levels of both aromatase mRNA and protein in the ovary. The increase in aromatase mRNA in this in vivo study could be explained by an increase in gonadotropin concentrations in response to decreased plasma concentrations of estrogens. In conclusion, we suggest that aromatase inhibitors increase aromatase protein through stabilization and reduced protein turnover.  (+info)