Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. (49/286)

Wnt regulation of beta-catenin degradation is essential for development and carcinogenesis. beta-catenin degradation is initiated upon amino-terminal serine/threonine phosphorylation, which is believed to be performed by glycogen synthase kinase-3 (GSK-3) in complex with tumor suppressor proteins Axin and adnomatous polyposis coli (APC). Here we describe another Axin-associated kinase, whose phosphorylation of beta-catenin precedes and is required for subsequent GSK-3 phosphorylation of beta-catenin. This "priming" kinase is casein kinase Ialpha (CKIalpha). Depletion of CKIalpha inhibits beta-catenin phosphorylation and degradation and causes abnormal embryogenesis associated with excessive Wnt/beta-catenin signaling. Our study uncovers distinct roles and steps of beta-catenin phosphorylation, identifies CKIalpha as a component in Wnt/beta-catenin signaling, and has implications to pathogenesis/therapeutics of human cancers and diabetes.  (+info)

Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. (50/286)

Wnt/Wingless signaling controls many fundamental processes during animal development. Wnt transduction is mediated by the association of beta-catenin with nuclear TCF DNA binding factors. Here we report the identification of two segment polarity genes in Drosophila, legless (lgs), and pygopus (pygo), and we show that their products are required for Wnt signal transduction at the level of nuclear beta-catenin. Lgs encodes the homolog of human BCL9, and we provide genetic and molecular evidence that these proteins exert their function by physically linking Pygo to beta-catenin. Our results suggest that the recruitment of Pygo permits beta-catenin to transcriptionally activate Wnt target genes and raise the possibility that a deregulation of these events may play a causal role in the development of B cell malignancies.  (+info)

Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. (51/286)

The secreted glycoprotein Wingless (Wg) acts through a conserved signaling pathway to regulate target gene expression. Wg signaling causes nuclear translocation of Armadillo, the fly beta-catenin, which then complexes with the DNA-binding protein TCF, enabling it to activate transcription. Though many nuclear factors have been implicated in modulating TCF/Armadillo activity, their importance remains poorly understood. This work describes a ubiquitously expressed protein, called Pygopus, which is required for Wg signaling throughout Drosophila development. Pygopus contains a PHD finger at its C terminus, a motif often found in chromatin remodeling factors. Overexpression of pygopus also blocks the pathway, consistent with the protein acting in a complex. The pygopus mutant phenotype is highly, though not exclusively, specific for Wg signaling. Epistasis experiments indicate that Pygopus acts downstream of Armadillo nuclear import, consistent with the nuclear location of heterologously expressed protein. Our data argue strongly that Pygopus is a new core component of the Wg signaling pathway that acts downstream or at the level of TCF.  (+info)

Furin cleavage is not a requirement for Drosophila Notch function. (52/286)

Notch (N) is a large transmembrane protein that acts as a receptor in an evolutionarily conserved intercellular signalling pathway. Because of this conservation, it has been assumed that biochemical events mediating N function are identical in all species. For instance, intracellular maturation by furin protease and subunit assembly leading to the formation of a heterodimeric cell surface N receptor are thought to be central to its function in both mammals and flies. However, in Drosophila the majority of N appears to be full-length. It has not been determined whether this full-length N protein is on the cell surface. We describe experiments which indicate that unlike mammalian N, the majority of Drosophila N on the cell surface is full-length and that in Drosophila, in vivo, furin cleavage is not required for biological activity. We further show that the behaviour of fly and mouse N can be interchanged simply by swapping the regions in which the mammalian furin-like cleavage site is located.  (+info)

Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. (53/286)

How stem cells are recruited to and maintained in their niches is crucial to understanding their regulation and use in regenerative medicine. Here, we demonstrate that DE-cadherin-mediated cell adhesion is required for anchoring germline stem cells (GSCs) in their niches in the Drosophila ovary. Two major components of this adhesion process, DE-cadherin and Armadillo/beta-catenin, accumulate at high levels in the junctions between GSCs and cap cells, one of the niche components. Removal of these proteins from GSCs results in stem cell loss. Furthermore, DE-cadherin is required for recruiting GSCs to their niche. Our study demonstrates that anchorage of GSCs in their niche by DE-cadherin-mediated adhesion is important for stem cell maintenance and function.  (+info)

Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. (54/286)

Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets.  (+info)

Drosophila Roc1a encodes a RING-H2 protein with a unique function in processing the Hh signal transducer Ci by the SCF E3 ubiquitin ligase. (55/286)

Substrate specificity of SCF E3 ubiquitin ligases is thought to be determined by the F box protein subunit. Another component of SCF complexes is provided by members of the Roc1/Rbx1/Hrt1 gene family, which encode RING-H2 proteins. Drosophila contains three members of this gene family. We show that Roc1a mutant cells fail to proliferate. Further, while the F box protein Slimb is required for Cubitus interruptus (Ci) and Armadillo/beta-catenin (Arm) proteolysis, Roc1a mutant cells hyperaccumulate Ci but not Arm. This suggests that Slimb and Roc1a function in the same SCF complex to target Ci but that a different RING-H2 protein acts with Slimb to target Arm. Consequently, the identity of the Roc subunit may contribute to the selection of substrates by metazoan SCF complexes.  (+info)

Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. (56/286)

Dynamically regulated cell adhesion plays an important role during animal morphogenesis. Here we use the formation of the visual system in Drosophila embryos as a model system to investigate the function of the Drosophila classic cadherin, DE-cadherin, which is encoded by the shotgun (shg) gene. The visual system is derived from the optic placode which normally invaginates from the surface ectoderm of the embryo and gives rise to two separate structures, the larval eye (Bolwig's organ) and the optic lobe. The optic placode dissociates and undergoes apoptotic cell death in the absence of DE-cadherin, whereas overexpression of DE-cadherin results in the failure of optic placode cells to invaginate and of Bolwig's organ precursors to separate from the placode. These findings indicate that dynamically regulated levels of DE-cadherin are essential for normal optic placode development. It was shown previously that overexpression of DE-cadherin can disrupt Wingless signaling through titration of Armadillo out of the cytoplasm to the membrane. However, the observed defects are likely the consequence of altered DE-cadherin mediated adhesion rather than a result of compromising Wingless signaling, as overexpression of a DE-cadherin-alpha-catenin fusion protein, which lacks Armadillo binding sites, causes similar defects as DE-cadherin overexpression. We further studied the genetic interaction between DE-cadherin and the Drosophila EGF receptor homolog, EGFR. If EGFR function is eliminated, optic placode defects resemble those following DE-cadherin overexpression, which suggests that loss of EGFR results in an increased adhesion of optic placode cells. An interaction between EGFR and DE-cadherin is further supported by the finding that expression of a constitutively active EGFR enhances the phenotype of a weak shg mutation, whereas a mutation in rhomboid (rho) (an activator of the EGFR ligand Spitz) partially suppresses the shg mutant phenotype. Finally, EGFR can be co-immunoprecipitated with anti-DE-cadherin and anti-Armadillo antibodies from embryonic protein extracts. We propose that EGFR signaling plays a role in morphogenesis by modulating cell adhesion.  (+info)