Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. (41/286)

S. tuberosum ssp. andigena potato plants require short days (SD) for tuberization. We have isolated PHOR1 (photoperiod-responsive 1), which shows upregulated expression in induced leaves (SD). PHOR1 encodes an arm repeat protein with homology to the Drosophila segment polarity protein armadillo. Antisense inhibition of PHOR1 produces a semidwarf phenotype similar to that of GA-deficient plants, and the antisense lines show reduced GA responsiveness combined with a higher endogenous GA content than wild-type plants. Feedback regulation of GA biosynthetic genes is also altered in these lines. Conversely, transgenic lines overexpressing PHOR1 show an enhanced response to GA. GA application induces rapid migration of PHOR1-GFP protein to the nucleus. Thus, PHOR1 appears to be a general component of GA signaling pathways that relocalizes to the nucleus in the presence of GA.  (+info)

Studies on human colon cancer gene APC by targeted expression in Drosophila. (42/286)

Mutations in human Adenomatous Polyposis Coli (APC) gene are associated with both familial and sporadic colorectal tumors. APC is known to down regulate beta-catenin levels, a transducer of Wnt signaling. The aim of this study is to provide transgenic Drosophila expressing either full-length or truncated forms of human APC (hAPC) protein and methods for using them in functional genomics and drug screening. Consistent with its biochemical properties, targeted expression of either full-length hAPC or its beta-catenin binding domain alone negatively regulated the function of the beta-catenin homologue, Armadillo (Arm) and thereby, inhibited Wnt/Wg signaling during fly development. hAPC inhibited Arm function even in the absence of GSK-3beta activity, although the latter was required to mediate the degradation of Arm. Consistent with this, hAPC suppressed the phenotypes induced by the over-expression of degradation-resistant forms of Arm. Subsequently, using hAPC-induced eye phenotypes as the assay in a suppressor-enhancer screen, we have identified two new loci in Drosophila, which modulate Wnt/Wg signaling. In addition, an anti-colon cancer drug, indomethacin, specifically enhanced hAPC-induced phenotypes.  (+info)

mARVCF cellular localisation and binding to cadherins is influenced by the cellular context but not by alternative splicing. (43/286)

ARVCF, a member of the catenin family, is thought to contribute to the morphoregulatory function of the cadherin-catenin complex. Recently, we reported the isolation and characterisation of murine ARVCF (mARVCF), particularly its interaction with M-cadherin. Here, we describe the identification of novel mARVCF isoforms that arise by alternative splicing. At the N-terminus, alternative splicing results in the inclusion or omission of a coiled-coil region probably important for protein-protein interactions. At the C-terminus, four isoforms also differ by domains potentially important for selective protein-protein interaction. The eight putative mARVCF isoforms were expressed as EGFP-fusion proteins in six different cell lines that exhibit a distinct pattern of cadherins. Apparently, binding of the mARVCF isoforms to M-, N-, or E-cadherin is generally unaffected by their altered N- and C-termini, as revealed by the MOM recruitment assay. However, mARVCF isoforms reproducibly exhibit differential localisation in distinct cellular environments. For example, mARVCF isoforms are unable to colocalise with N-cadherin in EJ28 carcinoma cells but do so in HeLa cells. Our results suggest that the subcellular localisation of mARVCF may be determined not only by the presence or absence of an appropriate interaction partner, in this case cadherins, but also by the cellular context.  (+info)

Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses. (44/286)

Densin-180, a protein purified from the postsynaptic density fraction of the rat forebrain, is the founding member of a newly described family of proteins termed the LAP (leucine-rich repeats and PSD-95/Dlg-A/ZO-1 (PDZ) domains) family that plays essential roles in establishment of cell polarity. To identify Densin-180-binding proteins, we screened a yeast two-hybrid library using the carboxyl-terminal fragment of Densin-180 containing PDZ domain as bait, and we isolated delta-catenin/neural plakophilin-related armadillo repeat protein (NPRAP) as a Densin-180-interacting protein. delta-catenin/NPRAP, a member of the armadillo repeat family, is a nervous system-specific adherens junction protein originally discovered as an interactor with presenilin-1, a protein involved in Alzheimer's disease. Densin-180 PDZ domain binds the COOH terminus of delta-catenin/NPRAP containing the PDZ domain-binding sequence. Endogenous Densin-180 was co-immunoprecipitated with delta-catenin/NPRAP and N-cadherin. Although Densin-180 was reported to be a transmembrane protein, Densin-180 was not accessible to surface biotinylation in dissociated hippocampal neurons; hence Densin-180 may be a cytosolic protein. Densin-180 co-localized with delta-catenin/NPRAP at synapses in delta-catenin/NPRAP and may be involved in organization of the synaptic cell-cell junction through interaction with the delta-catenin/NPRAP-N-cadherin complex.  (+info)

Bazooka and atypical protein kinase C are required to regulate oocyte differentiation in the Drosophila ovary. (45/286)

The par genes, identified by their role in the establishment of anterior-posterior polarity in the Caenorhabditis elegans zygote, subsequently have been shown to regulate cellular polarity in diverse cell types by means of an evolutionarily conserved protein complex including PAR-3, PAR-6, and atypical protein kinase C (aPKC). The Drosophila homologs of par-1, par-3 (bazooka, baz), par-6 (DmPar-6), and pkc-3 (Drosophila aPKC, DaPKC) each are known to play conserved roles in the generation of cell polarity in the germ line as well as in epithelial and neural precursor cells within the embryo. In light of this functional conservation, we examined the potential role of baz and DaPKC in the regulation of oocyte polarity. Our analyses reveal germ-line autonomous roles for baz and DaPKC in the establishment of initial anterior-posterior polarity within germ-line cysts and maintenance of oocyte cell fate. Germ-line clonal analyses indicate both proteins are essential for two key aspects of oocyte determination: the posterior translocation of oocyte specification factors and the posterior establishment of the microtubule organizing center within the presumptive oocyte. We demonstrate BAZ and DaPKC colocalize to belt-like structures between germarial cyst cells. However, in contrast to their regulatory relationship in the Drosophila and C. elegans embryos, these proteins are not mutually dependent for their germ-line localization, nor is either protein specifically required for PAR-1 localization to the fusome. Therefore, whereas BAZ, DaPKC, and PAR-1 are functionally conserved in establishing oocyte polarity, the regulatory relationships among these genes are not well conserved, indicating these molecules function differently in different cellular contexts.  (+info)

Cubitus interruptus acts to specify naked cuticle in the trunk of Drosophila embryos. (46/286)

One function of the Wingless signaling pathway is to determine the naked, cuticle cell fate choice in the trunk epidermis of Drosophila larvae. The zinc finger protein Teashirt binds to the transactivator domain of Armadillo to modulate Wingless signaling output in the embryonic trunk and contributes to the naked cell fate choice. The Hedgehog pathway is also necessary for the correct specification of larval epidermal cell fate, which signals via the zinc finger protein, Cubitus interruptus. Here, we show that Cubitus interruptus also has a Wingless-independent function, which is required for the specification of the naked cell fate; previously, it had been assumed that Ci induces naked cuticle exclusively by regulation of wg. Wg and Hh signaling pathways may be acting combinatorially in the same, or individually in different, cells for this process, by regulating common sets of target genes. First, the loss of the naked cuticular phenotype in embryos lacking cubitus interruptus activity is very similar to that induced by a late loss of Wingless function. Second, overexpression of Cubitus interruptus causes the suppression of denticles (as Wingless does) in absence of Wingless activity in the anterior trunk. Using epistasis experiments, we conclude that different combinations of the three proteins Teashirt, Cubitus interruptus, and Armadillo are employed for the specification of naked cuticle at distinct positions both along the antero-posterior axis and within individual trunk segments. Finally, biochemical approaches suggest the existence of protein complexes consisting of Teashirt, Cubitus interruptus, and Armadillo.  (+info)

The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. (47/286)

Erbin is a recently described member of the LAP (leucine-rich repeat and PDZ domain) protein family. We used a C-terminally displayed phage peptide library to identify optimal ligands for the Erbin PDZ domain. Phage-selected peptides were type 1 PDZ ligands that bound with high affinity and specificity to the Erbin PDZ domain in vitro. These peptides most closely resembled the C-terminal PDZ domain-binding motifs of three p120-related catenins: delta-catenin, ARVCF, and p0071 (DSWV-COOH). Analysis of the interactions of the Erbin PDZ domain with synthetic peptides matching the C termini of ARVCF or delta-catenin also demonstrated specific high affinity binding. We characterized the interactions between the Erbin PDZ domain and both ARVCF and delta-catenin in vitro and in vivo. The Erbin PDZ domain co-localized and coprecipitated with ARVCF or delta-catenin complexed with beta-catenin and E/N-cadherin. Mutagenesis and peptide competition experiments showed that the association of Erbin with the cadherin-catenin complex was mediated by the interaction of its PDZ domain with the C-terminal PDZ domain-binding motifs (DSWV-COOH) of ARVCF and delta-catenin. Finally, we showed that endogenous delta-catenin and Erbin co-localized in and co-immunoprecipitated from neurons. These results suggest that delta-catenin and ARVCF may function to mediate the association of Erbin with the junctional cadherin-catenin complex. They also demonstrate that C-terminal phage-display technology can be used to predict physiologically relevant ligands for PDZ domains.  (+info)

Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. (48/286)

Casein kinase I (CKI) was recently reported as a positive regulator of Wnt signaling in vertebrates and Caenorhabditis elegans. To elucidate the function of Drosophila CKI in the wingless (Wg) pathway, we have disrupted its function by double-stranded RNA-mediated interference (RNAi). While previous findings were mainly based on CKI overexpression, this is the first convincing loss-of-function analysis of CKI. Surprisingly, CKIalpha- or CKIepsilon-RNAi markedly elevated the Armadillo (Arm) protein levels in Drosophila Schneider S2R+ cells, without affecting its mRNA levels. Pulse-chase analysis showed that CKI-RNAi stabilizes Arm protein. Moreover, Drosophila embryos injected with CKIalpha double-stranded RNA showed a naked cuticle phenotype, which is associated with activation of Wg signaling. These results indicate that CKI functions as a negative regulator of Wg/Arm signaling. Overexpression of CKIalpha induced hyper-phosphorylation of both Arm and Dishevelled in S2R+ cells and, conversely, CKIalpha-RNAi reduced the amount of hyper-modified forms. His-tagged Arm was phosphorylated by CKIalpha in vitro on a set of serine and threonine residues that are also phosphorylated by Zeste-white 3. Thus, we propose that CKI phosphorylates Arm and stimulates its degradation.  (+info)