Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. (1/6)

A lectin with in-vitro anticancer activity against established human cancer cell lines has been purified by affinity chromatography on asialofetuin-linked amino activated silica beads from the tubers of Arisaema tortuosum, popularly known as Himalayan Cobra lily, a monocot plant from the family Araceae. The bound Arisaema tortuosum lectin (ATL) was eluted with glycine-HCl buffer, pH 2.5. ATL was effectively inhibited by asialofetuin, a complex desialylated serum glycoprotein as well as by N-acetyl-D-lactosamine, a disaccharide. It gave a single band corresponding to a subunit molecular weight of 13.5 kDa in SDS-PAGE, pH 8.8 both under reducing and non-reducing conditions. When subjected to gel-filtration on Biogel P-200, it was found to have a molecular weight of 54 kDa, suggesting a homotetramer structure, in which individual polypeptides are not bound to each other with disulfide bonds. ATL is a glycoprotein with 0.9 % carbohydrate content, stable up to 55(o)C and at pH 2 to 10. The lectin had no requirement for divalent metal ions i.e. Ca(2+) and Mn(2+) for its activity. However, as reported for other monocot lectins, ATL gave multiple bands in isoelectric focusing and Native PAGE, pH 8.3. The lectin was found to inhibit in vitro proliferation of human cancer cell lines HT29, SiHa and OVCAR-5.  (+info)

Cloning and characterization of an agglutinin gene from Arisaema lobatum. (2/6)

A novel agglutinin gene was cloned from Arisaema lobatum using SMART RACE-PCR technology. The full-length cDNA of Arisaema lobatum agglutinin (ala) was 1078 bp and contained a 774 bp open reading frame encoding a lectin precursor (proproprotein) of 258 amino acid residues with a 23 aa signal peptide. ALA contained three mannose-binding sites (QXDXNXVXY) with two-conserved domains of 45% identity, ALA-DOM1 and ALA-DOM2. The three-dimensional structure of ALA was very similar to that of GNA (Galanthus nivalis agglutinin). ALA shared varying identities, ranging from 40% to 85%, with mannose-binding lectins from other species of plant families, such as Araceae, Alliaceae, Iridaceae, Lillaceae, Amaryllidaceae and Bromeliaceae. Genomic sequence of ala was also cloned using genomic walker technology, and it was found to contain three putative TATA boxes and eight possible CAAT boxes in the 5'-flanking region. No intron was found within the region of genomic sequence. Southern blot analysis indicated that the ala belonged to a multi-copy gene family. Expression pattern analysis revealed that the ala preferentially expressed in the tissues with the higher expression being found in spadix, bud, leaf, spathe and tuber. The cloning of the ala gene not only provides a basis for further investigation of its structure, expression and regulation mechanism, but also enables us to test its potential role in controlling pests and fungal diseases by transferring the gene into plants in the future.  (+info)

A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. (3/6)

A tuber lectin from Arisaema jacquemontii Blume belonging to family Araceae was purified by employing a single step affinity chromatography using column of asialofetuin-linked amino activated silica beads and the bound lectin was eluted with 100 mM glycine-HCl buffer pH 2.5. The purified A. jacquemontii lectin (AJL) showed a single protein band with an apparent molecular mass of 13.4 kDa when submitted to SDS-polyacrylamide gel electrophoresis under reducing as well as non-reducing conditions. The native molecular mass of AJL determined by gel filtration on a Biogel P-200 column was 52 kDa and its carbohydrate content was estimated to be 3.40%. Thus AJL is a tetrameric glycoprotein. The purified lectin agglutinated erythrocytes from rabbit but not from human. Its activity was not inhibited by any of the mono- and disaccharides tested except N-acetyl-D-lactosamine having minimal inhibitory sugar concentration (MIC) 25 mM. Among the glycoproteins tested only asialofetuin was found to be inhibitory (MIC125 microg/mL). A single band was obtained in native PAGE at pH 4.5 while PAGE at pH 8.3 showed two bands. Isoelectric focusing of AJL gave multiple bands in the pI range of 4.6-5.5. When incorporated in artificial diet AJL significantly affected the development of Bactrocera cucurbitae (Coquillett) larvae indicating the possibility of using this lectin in a biotechnological strategy for insect management of cucurbits. Larvae fed on artificial diet containing sublethal dose of AJL showed a significant decrease in acid phosphatase and alkaline phosphatase activity while esterase activity markedly increased as compared to larvae fed on diet without lectin. Out of various human cancer cell lines employed in sulphorhodamine B (SRB) assay, this lectin was found to have appreciable inhibitory effect on the in vitro proliferation of HCT-15, HOP-62, SW-620, HT-29, IMR-32, SKOV-3, Colo-205, PC-3, HEP-2 and A-549 cancer cell lines by 82, 77, 73, 70, 41, 41, 37, 29, 21 and 21% respectively.  (+info)

Nematocidal flavone-C-glycosides against the root-knot nematode (Meloidogyne incognita) from Arisaema erubescens tubers. (4/6)

 (+info)

Purification of a lectin from Arisaema erubescens (Wall.) Schott and its pro-inflammatory effects. (5/6)

 (+info)

Development and characterization of a novel set of microsatellite markers for Arisaema serratum (Araceae). (6/6)

 (+info)