Comparison of the complexed and free forms of rat liver arginyl-tRNA synthetase and origin of the free form. (49/72)

Arginyl-tRNA synthetase is found in multiple molecular weight forms in extracts from a variety of mammalian tissues. The rat liver enzyme can be isolated either as a component of the synthetase complex (Mr greater than 10(6) or as a free protein (Mr = 60,000). However, based on activity measurements after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the free form differs from its counterpart in the complex (Mr = 72,000). Both forms of arginyl-tRNA synthetase cross-react with an antibody directed against the complex, and both have similar catalytic properties. Thus, the two proteins have similar apparent Km values for arginine and ATP, the same pH optimum, are inhibited equally by elevated ionic strength and PPi, and they aminoacylate the same population of tRNA molecules. On the other hand, the free and complexed forms differ with respect to their apparent Km values for tRNA (free, 4 microM; complexed, 28 microM), their temperature sensitivity (complexed greater sensitivity), and their hydrophobicity (complexed more hydrophobic). Limited proteolysis of the synthetase complex with papain releases a low molecular weight form of arginyl-tRNA synthetase whose size, temperature sensitivity, and hydrophobicity are similar to that of the endogenous free form. Nevertheless, the usual 2:1 ratio of complexed-to-free form of rat liver arginyl-tRNA synthetase is not altered by a variety of homogenization or incubation conditions in the presence or absence of multiple protease inhibitors. In contrast to extracts of rat liver, rabbit liver extracts do not contain a free form of arginyl-tRNA synthetase. These results suggest that the complexed and free forms of arginyl-tRNA synthetase are probably the same gene product and that the free form in rat liver extracts is derived from the complexed form by a limited endogenous proteolysis that removes the portion of the protein required for anchoring it in the complex. The question of whether the free form is an artifact of isolation or whether it pre-exists in the cell is discussed.  (+info)

Arginyl-tRNA synthetase from Baker's yeast. Order of substrate addition and action of ATP analogs in the aminoacylation reaction; influence of pyrophosphate on the catalytic mechanism. (50/72)

The order of substrate addition to arginyl-tRNA synthetase from baker's yeast has been investigated by bisubstrate kinetics, product inhibition and inhibition by three different inhibiting ATP analogs, the 6-N-benzyl, 8-bromo and 3'-deoxy derivatives of ATP, each acting competitively with respect to one of the substrates. The kinetic patterns are consistent with a random ter-ter mechanism, an addition of the three substrates and release of the products in random order. The different inhibitors are bound to different enzyme . substrate complexes of the reaction sequence. Addition of inorganic pyrophosphatase changes the inhibition patterns and addition of methylenediphosphonate as pyrophosphate analog abolishes the effect of pyrophosphatase, showing that the concentration of pyrophosphate is determinant for the mechanism of catalysis.  (+info)

Characterization of a homogeneous arginyl- and lysyl-tRNA synthetase complex isolated from rat liver. Kinetic mechanism for lysyl-tRNA synthetase. (51/72)

Bisubstrate kinetics and end product and dead end inhibition studies were performed on lysyl-tRNA synthetase isolated from rat liver. The kinetic patterns obtained are consistent with a sequential ordered mechanism of substrate addition, tRNA bound first, followed by lysine, and then by ATP. Pyrophosphate and AMP are released in a random fashion with aminoacylated tRNA the last product to dissociate from the enzyme. This is the first report of a kinetic mechanism for lysyl-tRNA synthetase.  (+info)

Arginyl-tRNA synthetase from brewer's yeast. Purification, properties, and steady-state mechanism. (52/72)

tRNAArg and arginyl-tRNA synthetase have been purified to homogeneity from brewer's yeast by chromatographic methods. Arginyl-tRNA synthetase is a monomeric enzyme with a molecular weight of 72000. Two active forms of the enzyme can be found, they are interconvertible. The more stable conformation is probably the natural one. Arginyl-tRNA synthetase seems to recognize arginine very specifically. No evidence for any proof-reading mechanism could be found. The steady-state mechanism is somewhat different from the types found with arginyl-tRNA synthetase from other sources. However, all these results are compatible with a concerted reaction. Simultaneously with the release of AMP or pyrophosphate an allosteric rearrangement occurs. This conversion seems to be determining for the reaction mechanism.  (+info)

Study of the interaction of yeast arginyl-tRNA synthetase with yeast tRNAArg2 and tRNAArg3 by partial digestions with cobra venom ribonuclease. (53/72)

Yeast tRNAArg2 and tRNAArg3 are two isoacceptors which show similar V and Km for yeast arginyl-tRNA synthetase despite important differences in their primary structures. Fragments resulting from the partial digestion of 3' or 5' end-labelled tRNAArg2 and tRNAArg3 in the presence or absence of arginyl-tRNA synthetase by cobra venom ribonuclease, an enzyme which cuts preferentially in double-stranded regions, were analysed by electrophoresis on polyacrylamide gels. In the absence of arginyl-tRNA synthetase, major cuts were observed in tRNAArg2 and tRNAArg3 at the end of the 3' part of the acceptor stem and in the 5' part of the anticodon stem, whereas the 5' part of the acceptor stem and the 3' part of the anticodon stem are only slightly cleaved. The D and the T stems are almost fully resistant to cobra venom ribonuclease attack confirming the strong tertiary structural organization of this region. In the presence of arginyl-tRNA synthetase the two or three last sites of the 3' halves of the acceptor stems and the sites in the 3' halves of the anticodon stems are almost completely protected against ribonuclease hydrolysis in both tRNAs; 31-69% protection of the sites located in the 5' halves of the anticodon stem is also observed. However, the cleavage levels are enhanced for the three head positions in the 3' halves of the acceptor stems and a new cut appears at the first position of this region in the case of tRNAArg3. The similarity of the protection patterns of tRNAArg2 and tRNAArg3 suggests that both molecules interact in nearly the same manner with arginyl-tRNA synthetase, which in turn implies great similarities in their tertiary structure when involved in the complex. If this tertiary organization is like that described for tRNAPhe, all protected sites are located in the inside of its L-shaped model.  (+info)

Enrichment and characterization of the mRNAs of four aminoacyl-tRNA synthetases from yeast. (54/72)

We have partially purified the messenger RNAs for yeast arginyl-, aspartyl-, valyl-, alpha and beta subunits of phenylalanyl-tRNA synthetases in order to study their biosynthesis and ultimately, to isolate their genes. Sucrose gradient fractionation of poly U-Sepharose selected mRNAs resulted in a ten fold enrichment of the in vitro translation activity of these mRNAs. The translation products of messenger RNAs for arginyl- and valyl-tRNA synthetases have the same molecular weight as the purified enzymes; translation of aspartyl-tRNA synthetase messenger RNA yielded a 68 kD molecular weight polypeptide (while the purified cristallisable enzyme appears as a 64-66 kD doublet, which, as we showed is a proteolysis product). The translation of the mRNAs for alpha and beta phenylalanyl-tRNA synthetase gave polypeptides having the same molecular weight as those obtained from the purified enzyme, but the major translation products are slightly heavier, indicating that they may be translated as precursors. As estimated from centrifugation experiments mRNAs of arginyl-, aspartyl-, alpha and beta subunits of phenylalanyl-tRNA synthetase were 1700-2000 nucleotides long, indicating that alpha and beta are translated from two different mRNAs.  (+info)

No arginyl adenylate is detectable as an intermediate in the aminoacylation of tRNAArg. (55/72)

On the supposition that aminoacyl adenylate is a necessary intermediate in the reactions catalyzed by aminoacyl-tRNA synthetases, six possible reactions requiring this intermediate were tested. With arginyl tRNA synthetase from brewer's yeast they were all negative and with phenylalanyl-tRNA synthetase they were all positive. Therefore, no evidence for the formation of arginyl adenylate could be provided. This is in contrast to results published elsewhere. It was shown that the reaction proceeds through a quaternary complex. The aminoacylation of the tRNA is followed by a rearrangement of the quaternary complex that also affects the structure of the arginyl-tRNA.  (+info)

Recognition of E coli tRNAArg by arginyl tRNA synthetase. (56/72)

Escherichia coli tRNAArg was digested with ribonuclease T1 under restrictive conditions in order to dissect a minimum number of diester bonds. The number of diester bonds cleaved and their locations were determined by phosphorylation of the newly formed 5' hydroxyl groups with [32P] ATP and polynucleotide kinase. There was complete loss of aminoacylation of tRNAARg when two diester bonds were cleaved at the anticodon. However, this material retained the specific properties of synthetase recognition. Two fragments were derived by further digestion of this tRNA. One 19 nucleotide-long fragment derived from the 3' end of tRNAArg and another 18 nucleotide-long fragment derived from the 5' end of the molecule were required to maintain the properties of the specific recognition by the arginyl tRNA synthetase in the absence of the rest of the structure including the anticodon.  (+info)