(1/10469) Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3'-end formation.

Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrplp is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrpl p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrpl p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.  (+info)

(2/10469) Gamma interferon stimulates rat alveolar macrophages to kill Pneumocystis carinii by L-arginine- and tumor necrosis factor-dependent mechanisms.

Pneumocystis carinii pneumonia remains a serious complication for immunocompromised patients. In the present study, P. carinii organisms interacted with gamma interferon (IFN-gamma)-stimulated alveolar macrophages (AMs) to activate the L-arginine-dependent cytocidal pathway involving reactive nitrogen intermediates (RNI) that were assayed as nitrite (NO2-). Unstimulated cultures of AMs produced negligible quantities of RNI. Addition of P. carinii organisms to IFN-gamma-primed AMs resulted in greatly enhanced production of RNI. NO2- levels increased from 0.8 +/- 0.4 to 11.1 +/- 3.8 microM as early as 6 h after P. carinii organisms were incubated with IFN-gamma-stimulated AMs and to 35.1 +/- 8.9 microM after a 24-h incubation, a near-maximum level. High levels of NO2- were produced by AMs primed with as little as 10 U of IFN-gamma per ml in the presence of P. carinii, and a 20-fold increase in IFN-gamma concentration resulted in only a further 65% increase in NO2- production. RNI-dependent killing of P. carinii was demonstrated by both a 51Cr release assay and a [35S]methionine pulse immunoprecipitation assay. Addition of either monoclonal tumor necrosis factor alpha (TNF-alpha) neutralizing antibody or 200 microM NG-monomethyl-L-arginine (L-NGMMA), a competitive inhibitor of the L-arginine-dependent pathway, significantly decreased NO2- production and reduced P. carinii killing. TNF-alpha alone had no effect on P. carinii viability. These results suggest that (i) the specific interaction of P. carinii organisms with IFN-gamma-primed AMs triggers the production of RNI, (ii) RNI are toxic to P. carinii, and (iii) TNF-alpha likely plays a central role in mediating P. carinii killing by IFN-gamma-stimulated AMs.  (+info)

(3/10469) Inhibition of transforming growth factor beta production by nitric oxide-treated chondrocytes: implications for matrix synthesis.

OBJECTIVE: Nitric oxide (NO) is generated copiously by articular chondrocytes activated by interleukin-1beta (IL-1beta). If NO production is blocked, much of the IL-1beta inhibition of proteoglycan synthesis is prevented. We tested the hypothesis that this inhibitory effect of NO on proteoglycan synthesis is secondary to changes in chondrocyte transforming growth factor beta (TGFbeta). METHODS: Monolayer, primary cultures of lapine articular chondrocytes and cartilage slices were studied. NO production was determined as nitrite accumulation in the medium. TGFbeta bioactivity in chondrocyte- and cartilage-conditioned medium (CM) was measured with the mink lung epithelial cell bioassay. Proteoglycan synthesis was measured as the incorporation of 35S-sodium sulfate into macromolecules separated from unincorporated label by gel filtration on PD-10 columns. RESULTS: IL-1beta increased active TGFbeta in chondrocyte CM by 12 hours; by 24 hours, significant increases in both active and latent TGFbeta were detectable. NG-monomethyl-L-arginine (L-NMA) potentiated the increase in total TGFbeta without affecting the early TGFbeta activation. IL-1beta stimulated a NO-independent, transient increase in TGFbeta3 at 24 hours; however, TGFbeta1 was not changed. When NO synthesis was inhibited with L-NMA, IL-1beta increased CM concentrations of TGFbeta1 from 24-72 hours of culture. L-arginine (10 mM) reversed the inhibitory effect of L-NMA on NO production and blocked the increases in TGFbeta1. Anti-TGFbeta1 antibody prevented the restoration of proteoglycan synthesis by chondrocytes exposed to IL-1beta + L-NMA, confirming that NO inhibition of TGFbeta1 in IL-1beta-treated chondrocytes effected, in part, the decreased proteoglycan synthesis. Furthermore, the increase in TGFbeta and proteoglycan synthesis seen with L-NMA was reversed by the NO donor S-nitroso-N-acetylpenicillamide. Similar results were seen with cartilage slices in organ culture. The autocrine increase in CM TGFbeta1 levels following prior exposure to TGFbeta1 was also blocked by NO. CONCLUSION: NO can modulate proteoglycan synthesis indirectly by decreasing the production of TGFbeta1 by chondrocytes exposed to IL-1beta. It prevents autocrine-stimulated increases in TGFbeta1, thus potentially diminishing the anabolic effects of this cytokine in chondrocytes.  (+info)

(4/10469) Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase. Implications for NADPH recognition and structural stability.

Phe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 A is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 A revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH.  (+info)

(5/10469) Possible role for ligand binding of histidine 81 in the second transmembrane domain of the rat prostaglandin F2alpha receptor.

For the five principal prostanoids PGD2, PGE2, PGF2alpha, prostacyclin and thromboxane A2 eight receptors have been identified that belong to the family of G-protein-coupled receptors. They display an overall homology of merely 30%. However, single amino acids in the transmembrane domains such as an Arg in the seventh transmembrane domain are highly conserved. This Arg has been identified as part of the ligand binding pocket. It interacts with the carboxyl group of the prostanoid. The aim of the current study was to analyze the potential role in ligand binding of His-81 in the second transmembrane domain of the rat PGF2alpha receptor, which is conserved among all PGF2alpha receptors from different species. Molecular modeling suggested that this residue is located in close proximity to the ligand binding pocket Arg 291 in the 7th transmembrane domain. The His81 (H) was exchanged by site-directed mutagenesis to Gln (Q), Asp (D), Arg (R), Ala (A) and Gly (G). The receptor molecules were N-terminally extended by a Flag epitope for immunological detection. All mutant proteins were expressed at levels between 50% and 80% of the wild type construct. The H81Q and H81D receptor bound PGF2alpha with 2-fold and 25-fold lower affinity, respectively, than the wild type receptor. Membranes of cells expressing the H81R, H81A or H81G mutants did not bind significant amounts of PGF2alpha. Wild type receptor and H81Q showed a shallow pH optimum for PGF2alpha binding around pH 5.5 with almost no reduction of binding at higher pH. In contrast the H81D mutant bound PGF2alpha with a sharp optimum at pH 4.5, a pH at which the Asp side chain is partially undissociated and may serve as a hydrogen bond donor as do His and Gln at higher pH values. The data indicate that the His-81 in the second transmembrane domain of the PGF2alpha receptor in concert with Arg-291 in the seventh transmembrane domain may be involved in ligand binding, most likely not by ionic interaction with the prostaglandin's carboxyl group but rather as a hydrogen bond donor.  (+info)

(6/10469) R73A and H144Q mutants of the yeast mitochondrial cyclophilin Cpr3 exhibit a low prolyl isomerase activity in both peptide and protein-folding assays.

Previously we reported that the R73A and H144Q variants of the yeast cyclophilin Cpr3 were virtually inactive in a protease-coupled peptide assay, but retained activity as catalysts of a proline-limited protein folding reaction [Scholz, C. et al. (1997) FEBS Lett. 414, 69-73]. A reinvestigation revealed that in fact these two mutations strongly decrease the prolyl isomerase activity of Cpr3 in both the peptide and the protein-folding assay. The high folding activities found previously originated from a contamination of the recombinant Cpr3 proteins with the Escherichia coli protein SlyD, a prolyl isomerase that co-purifies with His-tagged proteins. SlyD is inactive in the peptide assay, but highly active in the protein-folding assay.  (+info)

(7/10469) The stimulatory effects of Hofmeister ions on the activities of neuronal nitric-oxide synthase. Apparent substrate inhibition by l-arginine is overcome in the presence of protein-destabilizing agents.

A variety of monovalent anions and cations were effective in stimulating both calcium ion/calmodulin (Ca2+/CaM)-independent NADPH-cytochrome c reductase activity of, and Ca2+/CaM-dependent nitric oxide (NO.) synthesis by, neuronal nitric oxide synthase (nNOS). The efficacy of the ions in stimulating both activities could be correlated, in general, with their efficacy in precipitating or stabilizing certain proteins, an order referred to as the Hofmeister ion series. In the hemoglobin capture assay, used for measurement of NO. production, apparent substrate inhibition by L-arginine was almost completely reversed by the addition of sodium perchlorate (NaClO4), one of the more effective protein-destabilizing agents tested. Examination of this phenomenon by the assay of L-arginine conversion to L-citrulline revealed that the stimulatory effect of NaClO4 on the reaction was observed only in the presence of oxyhemoglobin or superoxide anion (generated by xanthine and xanthine oxidase), both scavengers of NO. Spectrophotometric examination of nNOS revealed that the addition of NaClO4 and a superoxide-generating system, but neither alone, prevented the increase of heme absorption at 436 nm, which has been attributed to the nitrosyl complex. The data are consistent with the release of autoinhibitory NO. coordinated to the prosthetic group of nNOS, which, in conjunction with an NO. scavenger, causes stimulation of the reaction.  (+info)

(8/10469) Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge.

Arginine 347 in the sixth transmembrane domain of cystic fibrosis transmembrane conductance regulator (CFTR) is a site of four cystic fibrosis-associated mutations. To better understand the function of Arg-347 and to learn how mutations at this site disrupt channel activity, we mutated Arg-347 to Asp, Cys, Glu, His, Leu, or Lys and examined single-channel function. Every Arg-347 mutation examined, except R347K, had a destabilizing effect on the pore, causing the channel to flutter between two conductance states. Chloride flow through the larger conductance state was similar to that of wild-type CFTR, suggesting that the residue at position 347 does not interact directly with permeating anions. We hypothesized that Arg-347 stabilizes the channel through an electrostatic interaction with an anionic residue in another transmembrane domain. To test this, we mutated anionic residues (Asp-924, Asp-993, and Glu-1104) to Arg in the context of either R347E or R347D mutations. Interestingly, the D924R mutation complemented R347D, yielding a channel that behaved like wild-type CFTR. These data suggest that Arg-347 plays an important structural role in CFTR, at least in part by forming a salt bridge with Asp-924; cystic fibrosis-associated mutations disrupt this interaction.  (+info)