Pseudotypes of vesicular stomatitis virus and Pichinde virus. (25/73)

Super-infection of Pichinde virus-infected cells with vesicular stomatitis virus (VSV) resulted in the production of pseudotype virus which was not neutralized by antiserum to VSV but which was neutralized by antiserum to Pichinde virus. Analysis of pseudotype virus production in relation to the kinetics of replication of Pichinde virus demonstrated that pseudotype virus production occurred when super-infection with VSV was initiated 8 h or more after infecting the cells with Pichinde virus. The quantities of pseudotype virus produced correlated with the quantities of Pichinde virus antigen detected on the surface of the cells both during acute infection and in cells chronically infected with Pichinde virus. The observations indicate that pseudotype of VSV and Pichinde virus are readily formed and that the formation of pseudotype virus may be used to examine the Pichinde virus antigens expressed on the surface of infected cells.  (+info)

Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. (26/73)

 (+info)

The curious case of arenavirus entry, and its inhibition. (27/73)

 (+info)

Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. (28/73)

 (+info)

A novel mechanism for the initiation of Tacaribe arenavirus genome replication. (29/73)

The ends of arenavirus genome and antigenome RNAs are highly conserved and where determined directly, always contain a 3' G (referred to as position +1). However, primers extended to the 5' ends of Tacaribe virus genomes and antigenomes extend to position -1. When genomes and antigenomes are annealed either inter or intramolecularly and treated with RNase A or T1, there appears to be a single unpaired G at the 5' ends of the hybrids. A single extra G is also found by cloning the 5' ends of S antigenomes, and studies with capping enzyme detect (p)ppG at the 5' ends of genome and antigenome chains. A model is proposed in which genome replication initiates with pppGpC to create the nontemplated extra G. In contrast, the nontemplated bases at the 5' ends of the N mRNAs, which extend to positions -1 to -5, were found to be capped and also heterogeneous in sequence.  (+info)

Distinctive RNA transcriptase, polyadenylic acid polymerase, and polyuridylic acid polymerase activities associated with Pichinde virus. (30/73)

Three RNA polymerase activities were found and associated with purified Pichinde virus, a member of the Arenaviridae. A heat-labile polymerase activity which required all four ribonucleoside triphosphates for optimal activity co-sedimented on sucrose gradient centrifugation with the viral ribonucleoprotein complex from detergent-disrupted virus preparations. This enzyme synthesized heteropolymers which represented about 23% of the genome RNA as determined by nucleic acid hybridization. Two relatively heat-stable polymerase activities which differed in their cation requirement and substrate specificity were recovered with the virus-associated ribosomes. These polymerase activities synthesized homopolymers of limited chain length: in the presence of 10 mM Mg2%, polyuridylic acid was made, whereas in the presence of 1 mM Mn2%, polyadenylic acid was made. The addition of complementary RNA synthesized with the viral transcriptase in vitro to the reaction mixture containing the polyadenylic acid polymerase activity resulted in the terminal addition of polyadenylic acid to the complementary RNA. The possible function of the ribosome-associated polymerase activities in the replication of the virus is discussed.  (+info)

Cell culture and electron microscopy for identifying viruses in diseases of unknown cause. (31/73)

 (+info)

Prediction of arenavirus fusion peptides on the basis of computer analysis of envelope protein sequences. (32/73)

Theoretical search and selection criteria for putative fusion peptides of enveloped viruses are proposed. Arenavirus fusion peptides are predicted on the basis of computer-assisted analysis of amino acid sequences of arenavirus envelope proteins and elements of their secondary and tertiary structure. Accordingly, two regions of GP2 surface protein from 5 viruses of Arenaviridae family have been detected with properties typical of fusion peptides of other enveloped viruses. One region, named peptide IV, located at the N-terminus of the GP2 protein, is followed by the other region or peptide V, more likely candidate for the arenavirus fusion peptide.  (+info)