Regulation of distinct muscle behaviors controls the C. elegans male's copulatory spicules during mating. (9/85)

We demonstrate through cell ablation, molecular genetic, and pharmacological approaches that during C. elegans male mating behavior, the male inserts his copulatory spicules into the hermaphrodite by regulating periodic and prolonged spicule muscle contractions. Distinct cholinergic neurons use different ACh receptors and calcium channels in the spicule muscles to mediate these contractile behaviors. The PCB and PCC sensory neurons facilitate periodic contraction through muscle-encoded UNC-68 ryanodine receptor calcium channels. The SPC motor neurons trigger prolonged contraction through EGL-19 L-type voltage-gated calcium channels. The male gonad then lengthens the duration of EGL-19-mediated prolonged muscle contraction. This regulation of muscle contraction provides a paradigm to explain how animals initiate, monitor, and maintain a behavioral motor program.  (+info)

Autonomous activity in the isolated guinea pig bladder. (10/85)

Phasic changes in pressure have been reported to occur in the bladder which are not associated with micturition. Spontaneous intravesical pressure changes can be recorded from bladders in vitro or bladders in vivo isolated from the central nervous system suggesting that the bladder itself is capable of autonomous activity. Experiments using isolated cells and muscle strips indicate that the smooth muscle can generate spontaneous activity. Whether this is the origin of phasic changes in the intact organ remains unknown. The present study set out to establish the presence and characteristics of autonomous activity in the isolated guinea pig bladder. Multiple-point motion analysis and concurrent intravesical pressure recording were used to identify and quantify spontaneous and evoked activity. Highly complex autonomous activity was observed in unstimulated bladders. This activity comprised localised micro-contractions in single or multiple discrete regions, waves of activity and micro-stretches. Low-amplitude phasic 'micro-transients' were seen in the intravesical pressure trace in association with micro-contractions. Incremental increases in the intravesical volume recruited additional areas of activity. Atropine and tetrodotoxin had no effect on the micro-transients or micro-contractions. Exposure to the muscarinic agonist arecaidine (10-300 nM) initially increased the incidence of micro-contractions which subsequently became co-ordinated into phasic pressure rises and contraction waves, interspersed with periods of total quiescence. The findings describe the generation and co-ordination of autonomous activity in the bladder wall and also demonstrate complex phasic activity. This approach has shown the importance of assessing the integrative properties of the entire organ in studies of the physiology and patho-physiology of the bladder.  (+info)

Agonist- and nerve-induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity. (11/85)

Spontaneous localised propagating waves of contraction and localised stretches have been reported to occur in the isolated whole bladder of the guinea pig. The physiological role and the cellular processes underlying these events are unknown. In order to gain insight into the mechanisms generating this complex activity, experiments were performed to examine and compare the responses of the whole bladder preparation to (i) the muscarinic agonists carbachol and arecaidine, (ii) the nicotinic ligand lobeline and (iii) nerve stimulation. High concentrations of the muscarinic agonists (>3 micro M) induced a slow rise in intra-vesical pressure upon which were superimposed pressure transients, while low concentrations (< 300 nM) induced only phasic rises in pressure. One interpretation of these data is that there are two separate mechanisms activated by muscarinic agonists: one generating contracture and the other phasic activity. Immunocytochemical staining revealed M(3) muscarinic receptors on smooth muscle cells within trabeculae and a second population of positive cells in the sub-urothelial layer. This observation raises the possibility that the actions of muscarinic agonists are a consequence of activating different cell types. Lobeline (1-60 micro M) activated phasic contractions but did not cause a rise in basal pressure. Atropine did not inhibit the lobeline-induced responses but abolished the muscarinic responses. Also, hexamethonium or tetrodotoxin did not affect the lobeline-induced responses. These observations suggest that the mechanism generating phasic activity is activated by a nicotinic stimulus that does not involve ganglia, nerves or the neuromuscular junction. Stimulation of the bladder nerve at frequencies between 20 and 30 Hz for 5 s resulted in a rapid rise in intra-vesical pressure. Prolonged nerve stimulation (10-200 s) at frequencies between 1 and 10 Hz activated phasic rises in pressure. Low frequency nerve stimulation increased the frequency of agonist-induced phasic activity. Thus, nerve stimulation can also produce two forms of activity and low frequency stimulation can augment the processes generating phasic activity. These observations suggest that there are two distinct types of bladder activity: global contractions involving most of the bladder wall and phasic contractions comprising propagating waves of contraction. The mechanisms generating these contractile events appear to be different and they may involve cells located in different regions of the bladder. The nature of these mechanisms and their possible physiological significance is discussed.  (+info)

Roles of keratinocyte inflammation in oral cancer: regulating the prostaglandin E2, interleukin-6 and TNF-alpha production of oral epithelial cells by areca nut extract and arecoline. (12/85)

Betel quid (BQ) chewing is an etiologic factor of oral cancer and submucus fibrosis (OSF). Keratinocyte inflammation is crucial for the pathogenesis of cancer and tissue fibrosis. We found that areca nut (AN) extract (100-400 micro g/ml) induced PGE2 production by KB cells by 2.34- to 23.1-fold and also TNF-alpha production by gingival keratinocytes (GK). Arecoline (0.2-1.2 mM) elevated PGE2 production by KB cells by 2.5- to 6.1-fold. AN extract (200-400 micro g/ml) also induced IL-6 production by GK (7.5- to 8.4-fold) and KB cells. In contrast, arecoline (0.1-1.2 mM) suppressed IL-6 production by GK and KB cells, with 42-81 and 41-63% inhibition, respectively. A 48 h exposure of GK to 800-1200 micro g/ml AN extract led to 37-69% cell death. Arecoline cytotoxicity to GK was noted at concentrations of 0.8-1.2 mM, which led to 28-38% cell death. AN extract (400-800 micro g/ml) induced Cox-2 and IL-6 mRNA expression and also COX-2 protein production by KB cells. IL-6 (5-100 ng/ml) suppressed GK growth by 20-33%, but enhanced oral fibroblast (OMF) and KB cell growth. PGE2 (0.05-5 micro g/ml) and anti-IL-6 antibody (ab) (50-1000 ng/ml) showed little effect on GK and KB cell growth. Incubation of GK and KB cells with aspirin, anti-IL-6 ab and anti-TNF-alpha ab showed little effect on arecoline- and AN-induced cytotoxicity, cell cycle arrest and apoptosis. Exposure to anti-TNF-alpha ab slightly affected arecoline- and AN-modulated PGE2 and IL-6 production by GK and KB cells. Arecoline- and AN-conditioned medium decreased phytohemagglutinin-mediated CD4+ and CD8+ T cell activation. These results indicate that BQ chewing contributes to the pathogenesis of cancer and OSF by impairing T cell activation and by induction of PGE2, TNF-alpha and IL-6 production, which affect oral mucosal inflammation and growth of OMF and oral epithelial cells.  (+info)

Characterization of cholinergic receptors in Madin-Darby canine kidney cells. (13/85)

Muscarinic-type cholinergic receptors coupled to the phosphoinositide (PI) second messenger system are reported to be present in the inner medullary collecting duct cells. Madin-Darby canine kidney (MDCK) cells have several characteristics of collecting duct cells and have been shown to respond to muscarinic agonists. To determine if MDCK cells have PI-coupled muscarinic receptors, the radioligand binding and the effects of cholinergic agonists and antagonists on PI hydrolysis in MDCK cells were studied. The specific binding of [3H]1-quinuclidinyl benzilate ([3H]QNB), a muscarinic antagonist, to MDCK cell membranes had a Kd = 88 +/- 7 pM and a Bmax = 1464 +/- 88 fmol/mg of protein. The displacement of [3H]QNB from MDCK cell membranes by various cholinergic antagonists and agonists showed the order of potency: atropine greater than 4-diphenylacetoxy N-methylpiperidine (4-DAMP) greater than p-fluorohexahydrosiladifenidol greater than pirenzepine greater than metoctramine greater than arecoline greater than carbachol. The cholinergic agonists carbachol and arecoline stimulated PI hydrolysis in a concentration-dependent manner with an EC50 of 3.7 and 1.3 microM, respectively. Muscarinic antagonists abolished carbachol-stimulated PI hydrolysis in the following order of potency: atropine greater than 4-DAMP greater than pirenzepine much greater than methoctramine. The order of potency of muscarinic antagonists is consistent with the characteristics of the M3 subtype of muscarinic receptors. It is concluded that: (1) muscarinic receptor density in MDCK cells is 50 times higher than that in inner medullary collecting duct cells; (2) muscarinic receptors in MDCK cells are putative M3 subtype; and (3) muscarinic receptors in MDCK cells are functionally coupled to the PI second messenger system. This intracellular messenger system may, at least, be partially responsible for the action of cholinergic agonists in these cells and in the kidney.  (+info)

Role of lime in the generation of reactive oxygen species from betel-quid ingredients. (14/85)

The role of lime in the formation of reactive oxygen species (ROS), i.e., O2-., H2O2, and OH., from betel-quid components (extracts of areca nut and catechu) was investigated in vitro using a chemiluminescence technique and an assay for oxidative DNA damage involving analysis of 8-hydroxy-2'-deoxyguanosine. Of the various areca-nut extracts, the catechin fraction, at alkaline pH, was shown to be the most active producer of ROS. The free Ca(OH)2 content and pH of lime samples (a component of betel quid and chewing tobacco) were highly correlated with the generation of ROS from areca-nut extract in vitro and with oxidative base damage to DNA in vitro. While Fe2+ had an enhancing effect on ROS formation, Mg2+ had a marked inhibitory effect. The cytogenetic effects of ROS generated in vivo were measured in Syrian golden hamsters in which the cheek pouch had been painted with lime and an areca-nut extract or catechu, singly or in combination. The frequency of micronucleated cells was increased only in animals that had received both the areca-nut extract and lime. The frequency of micronucleated cells in exfoliated oral mucosal cells from Indian chewers of betel quid with tobacco containing lime or of tobacco with lime was significantly higher than in a control (no habit) group. These studies demonstrate that addition of lime to betel quid constituents generates ROS, which induce cytogenetic damage in hamster cheek pouch and may contribute to the cytogenetic damage observed in the oral cavity of betel-quid chewers. These results implicate ROS in clastogenesis and probably in the etiology of oral cancer.  (+info)

Involvement of viral and chemical factors with oral cancer in Taiwan. (15/85)

BACKGROUND: The association between oral squamous cell carcinoma (OSCC) and viral and chemical factors is uncertain. Therefore the correlation of viral and chemical factors with oral cancer in Taiwan was investigated. METHODS: Thirty-seven paraffin-embedded oral cancer biopsies and 36 normal oral tissue specimens were examined by the polymerase chain reaction method for six viruses: HPV, CMV, EBV, HSV-1, HSV-2 and HHV-8. To elucidate the role of arecoline in the oncogenesis of oral cancer, human buccal fibroblasts, oral submucosal fibroblasts and three cancer cell lines KB, GNM and TSCCa were used for MTT cytotoxity assay and flow cytometry DNA content analysis. RESULTS: Two (5.4%) HSV-1-positive and four (10.8%) HPV-positive cases were recognized in oral cancer biopsies. Among the four HPV-positive tissues, two were further typed as HPV-16, one was identified as HPV-18- and HSV-1-positive; and one contained both HPV-16 and HPV-18. One sample presented HSV-1 only. Arecoline, at a concentration lower than 0.8 micro g/ml, increased cell growth (all cell types); at higher concentrations (25-400 micro g/ml) it was cytotoxic. The cell cycle was demonstrated to be altered either by low or high concentrations of arecoline treatment, depending on the cells treated. CONCLUSIONS: The data demonstrated that HPV, HSV-1 and betel quid chewing were significantly associated with OSCC, but HSV-2, CMV, EBV and HHV-8 were not. We suggest that the most determinative factor for oral cancer may be chemical in nature rather than viral infection.  (+info)

Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill. (16/85)

BACKGROUND: In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. RESULTS: The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. CONCLUSIONS: Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.  (+info)