Studies on a mechanism by which cytosolic phospholipase A2 regulates the expression and function of type IIA secretory phospholipase A2. (33/375)

Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  (+info)

Angiotensin II increases neuronal delayed rectifier K(+) current: role of 12-lipoxygenase metabolites of arachidonic acid. (34/375)

Angiotensin II (Ang II) elicits an Ang II type 2 (AT(2)) receptor-mediated increase in voltage-dependent delayed rectifier K(+) current (I(KV)) in neurons cultured from newborn rat hypothalamus and brain stem. In previous studies, we have determined that this effect of Ang II is mediated via a Gi protein, activation of phospholipase A(2) (PLA(2)), and generation of arachidonic acid (AA). AA is rapidly metabolized within cells via lipoxygenases (LO), cyclooxygenase (COX) or p450 monooxygenase enzymes, and the metabolic products are known regulators of K(+) currents and channels. Thus in the present study, we have investigated whether the AT(2) receptor-mediated effects of Ang II on neuronal I(KV) require AA metabolism and if so, which metabolic pathways are involved. The data presented here indicate that the stimulatory actions of Ang II and AA on neuronal I(KV) are attenuated by selective blockade of 12-LO enzymes. However, the effects of Ang II are not altered by blockade of 5-LO or p450 monooxygenase enzymes. Furthermore, the actions of Ang II are mimicked by a 12-LO metabolite of AA, but 5-LO metabolites such as leukotriene B(4) and C(4) do not alter neuronal I(KV). These data indicate that the AT(2) receptor-mediated stimulation of neuronal I(KV) is partially mediated through 12-LO metabolites of AA.  (+info)

Cellular components that functionally interact with signaling phospholipase A(2)s. (35/375)

Accumulating evidence has suggested that cytosolic phospholipase A(2) (cPLA(2)) and several secretory PLA(2) (sPLA(2)) isozymes are signaling PLA(2)s that are functionally coupled with downstream cyclooxygenase (COX) isozymes for prostaglandin (PG) biosynthesis. Arachidonic acid (AA) released by cPLA(2) and sPLA(2)s is supplied to both COX-1 and COX-2 in the immediate, and predominantly to COX-2 in the delayed, PG-biosynthetic responses. Vimentin, an intermediate filament component, acts as a functional perinuclear adapter for cPLA(2), in which the C2 domain of cPLA(2) associates with the head domain of vimentin in a Ca(2+)-sensitive manner. The heparin-binding signaling sPLA(2)-IIA, IID and V bind the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican, which plays a role in sorting of these isozymes into caveolae and perinuclear compartments. Phospholipid scramblase, which facilitates transbilayer movement of anionic phospholipids, renders the cellular membranes more susceptible to signaling sPLA(2)s. There is functional cooperation between cPLA(2) and signaling sPLA(2)s in that prior activation of cPLA(2) is required for the signaling sPLA(2)s to act properly. cPLA(2)-derived AA is oxidized by 12/15-lipoxygenase, the products of which not only augment the induction of sPLA(2) expression, but also cause membrane perturbation, leading to increased cellular susceptibility to the signaling sPLA(2)s. sPLA(2)-X, a heparin-non-binding sPLA(2) isozyme, is capable of releasing AA from intact cells in the absence of cofactors. This property is attributed to its ability to avidly hydrolyze zwitterionic phosphatidylcholine, a major phospholipid in the outer plasma membrane. sPLA(2)-V can also utilize this route in several cell types. Taken together, the AA-releasing function of sPLA(2)s depends on the presence of regulatory cofactors and interfacial binding to membrane phospholipids, which differ according to cell type, stimuli, secretory processes, and subcellular distributions.  (+info)

Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism. (36/375)

The 12-lipoxygenase pathway of arachidonic acid metabolism in platelets and other cells is bifurcated into a reduction route yielding 12-hydroxyeicosatetraenoic acid (12-HETE) and an isomerization route forming hepoxilins. Here we show for the first time the presence of phospholipid hydroperoxide glutathione peroxidase (PHGPx) protein and its activity in platelets. The ratio of the activity of PHGPx to that of cytosolic glutathione peroxidase (GPx-1) was consistently found to be approx. 1:60 in platelets and UT7 megakaryoblasts. Moreover, short-lived PHGPx mRNA was detected in megakaryocytes but not in platelets. Carboxymethylation of selenium-containing glutathione peroxidases by iodoacetate, which results in the inactivation of PHGPx and GPx-1 without inhibition of 12-lipoxygenase, markedly altered the pattern of arachidonic acid metabolism in human platelets. Whereas the formation of 12-HETE was inhibited by 80%, a concomitant accumulation of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) by two orders of magnitude as well as the formation of hepoxilins A(3) and B(3) were observed. The formation of hepoxilins also occurred when 12-HpETE was added to untreated platelets. In selenium-deficient UT7 cells, which were devoid of GPx-1 but not of PHGPx, the reduction of 12-HPETE was retained, albeit with a lower rate than in control cells containing GPx-1. We therefore believe that both GPx-1 and PHGPx are involved in the regulatory network of the 12-lipoxygenase pathway in platelets and other mammalian cells. Moreover, the diminution of hydroperoxide tone in platelets incubated with arachidonic acid leads primarily to the formation of 12-HETE, whereas the increase in hydroperoxide tone (a situation found under oxidative stress or selenium deficiency or on incubation with 12-HPETE) partly diverts the 12-lipoxygenase pathway from the reduction route to the isomerization route, thus resulting in the formation of hepoxilins.  (+info)

Overexpression of 12-lipoxygenase causes cardiac fibroblast cell growth. (37/375)

Evidence suggests that leukocyte type 12-lipoxygenase (12-LO) plays an important role in cell growth. However, the role of 12-LO in cardiac cell growth has not been tested. We have now stably overexpressed 12-LO cDNA in rat fetal cardiac fibroblasts to evaluate the role of the 12-LO pathway in cardiac cell growth. Overexpression of 12-LO increased cell [(3)H]leucine incorporation by 2.1+/-0.1-fold (P<0.01) and cell protein content by 2.2+/-0. 3-fold (P<0.01) over mock-transfected cells. These findings were confirmed in additional clones. Baicalein, a 12-LO enzyme inhibitor, dose-dependently inhibited serum-induced leucine incorporation in cardiac fibroblast cells as well as partially inhibited leucine incorporation in cells overexpressing 12-LO. 12-LO overexpression also caused cell [(3)H]thymidine incorporation to increase by 3.4+/-0.3-fold (P<0.01). Cell flow cytometry analysis showed that the size of 12-LO-overexpressing cells was markedly enlarged compared with that of mock-transfected cells. The fibronectin content of the 12-LO-overexpressing cardiac fibroblasts was also significantly increased. We next evaluated the effects of 12-LO RNA overexpression on kinase pathways linked to cellular growth. The overexpression of 12-LO enhanced extracellular signal-regulated kinase activity (4. 1+/-0.5-fold), c-Jun NH(2)-terminal kinase activity (2.9+/-0.5-fold), and p38 mitogen-activated protein kinase activity (2.2+/-0.3-fold). Pretreatment with SB202190 (100 nmol/L), a specific inhibitor of p38, prevented the increases in protein content of 12-LO-overexpressing cardiac fibroblast cells. These data clearly demonstrate that the overexpression of 12-LO causes cell growth of cardiac fibroblasts, thus supporting the role of 12-LO as a novel growth-promoting pathway in the heart.  (+info)

12-lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation. (38/375)

Noncyclooxygenase metabolites of arachidonic acid (AA) have been proposed to mediate endothelium-dependent vasodilation in the coronary microcirculation. Therefore, we examined the formation and bioactivity of AA metabolites in porcine coronary (PC) microvascular endothelial cells and microvessels, respectively. The major noncyclooxygenase metabolite produced by microvascular endothelial cells was 12(S)-hydroxyeicosatetraenoic acid (HETE), a lipoxygenase product. 12(S)-HETE release was markedly increased by pretreatment with 13(S)-hydroperoxyoctadecadienoic acid but not by the reduced congener 13(S)-hydroxyoctadecadienoic acid, suggesting oxidative upregulation of 12(S)-HETE output. 12(S)-HETE produced potent relaxation and hyperpolarization of PC microvessels (EC(50), expressed as -log[M] = 13.5 +/- 0.5). Moreover, 12(S)-HETE potently activated large-conductance Ca(2+)-activated K(+) currents in PC microvascular smooth muscle cells. In contrast, 12(S)-HETE was not a major product of conduit PC endothelial AA metabolism and did not exhibit potent bioactivity in conduit PC arteries. We suggest that, in the coronary microcirculation, 12(S)-HETE can function as a potent hyperpolarizing vasodilator that may contribute to endothelium-dependent relaxation, particularly in the setting of oxidative stress.  (+info)

Increased levels of 12(S)-HETE in patients with essential hypertension. (39/375)

The platelet-type 12-lipoxygenase (12-LO) catalyzes the transformation of arachidonic acid into 12-hydroperoxyeicosatetraenoic acid [12-(S)HPETE], which is reduced to 12-hydroxyeicosatetraenoic acid [12-(S)HETE]. These metabolites exhibit a variety of biological activities such as mediation of angiotensin II-induced intracellular calcium transients in cultured rat vascular smooth muscle cells. It has recently been reported that platelet 12(S)-HETE production is enhanced in the spontaneously hypertensive rat. The pronounced hypotensive effect of LO inhibition in SHR suggests that LO activity may play a role in this form of hypertension. The aim of this study was to determine the basal and thrombin-induced platelet 12(S)-HETE production and the urinary 12(S)-HETE excretion in essential hypertension. We studied 19 patients with this disease (57+/-2 years of age) and 9 normotensive control subjects (48+/-5 years of age) (P:=0.074). 12(S)-HETE was measured in Sep-Pack-extracted samples with specific ELISA and high-performance liquid chromatography. The platelet basal level of 12(S)-HETE was significantly higher in patients than in control subjects (3.56+/-1.22 versus 0.64+/-0.13 ng/10(6) platelets, P:<0.025). In contrast, there were no differences in thrombin-stimulated (1 U/mL) 12(S)-HETE generation: 7.66+/-2.14 in patients versus 4.87+/-1.46 in control subjects (P:=0.61). Platelet 12-LO protein levels, measured by Western blotting with a polyclonal antibody, were higher in the patients than in the control subjects. The urinary excretion of 12(S)-HETE was higher in patients than in control subjects: 36.8+/-7.24 versus 17.1+/-3.14 ng/mg creatinine (P:<0.01). These results indicate that 12(S)-HETE levels and 12-LO protein are increased in patients with essential hypertension, suggesting a role for this metabolite in human hypertension.  (+info)

Ribozyme-mediated inhibition of rat leukocyte-type 12-lipoxygenase prevents intimal hyperplasia in balloon-injured rat carotid arteries. (40/375)

BACKGROUND: 12-Lipoxygenase (12-LO) products of arachidonate metabolism have growth and chemotactic effects in vascular smooth muscle cells. We have also recently demonstrated increased 12-LO mRNA and protein expression in the neointima of balloon-injured rat carotid arteries. In this study, we evaluated whether 12-LO activation plays a role in neointimal thickening in this rat model by using a specific ribozyme (Rz) directed to rat 12-LO. METHODS AND RESULTS: We designed a chimeric DNA-RNA hammerhead Rz to cleave rat leukocyte-type 12-LO mRNA. This Rz dose-dependently cleaved a 166-nucleotide target 12-LO mRNA substrate in vitro and reduced 12-LO mRNA and protein expression in rat vascular smooth muscle cells. A control mutant Rz (MRz) with a point mutation in the catalytic site was inactive. To test the in vivo efficacy of the 12-LO Rz, the left common carotid arteries of rats were injured with a balloon catheter. The distal half of the injured arteries was treated with Rz or MRz mixed with lipofectin. The proximal half received only lipofectin. Twelve days after injury, intima-to-media ratios were significantly lower in the Rz-treated sections than in untreated sections from the same rat (0.742+/-0.16 versus 1.749+/-0.12, P:<0.001). In contrast, the MRz had no significant effect. CONCLUSIONS: These results indicate the important role of the leukocyte-type 12-LO pathway in restenosis in response to injury.  (+info)