Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. (25/1459)

Aquaporin-5 (AQP5) is a water-selective transporting protein expressed in epithelial cells of serous acini in salivary gland. We generated AQP5 null mice by targeted gene disruption. The genotype distribution from intercross of founder AQP5 heterozygous mice was 70:69:29 wild-type:heterozygote:knockout, indicating impaired prenatal survival of the null mice. The knockout mice had grossly normal appearance, but grew approximately 20% slower than litter-matched wild-type mice when placed on solid food after weaning. Pilocarpine-stimulated saliva production was reduced by more than 60% in AQP5 knockout mice. Compared with the saliva from wild-type mice, the saliva from knockout mice was hypertonic (420 mosM) and dramatically more viscous. Amylase and protein secretion, functions of salivary mucous cells, were not affected by AQP5 deletion. Water channels AQP1 and AQP4 have also been localized to salivary gland; however, pilocarpine stimulation studies showed no defect in the volume or composition of saliva in AQP1 and AQP4 knockout mice. These results implicate a key role for AQP5 in saliva fluid secretion and provide direct evidence that high epithelial cell membrane water permeability is required for active, near-isosmolar fluid transport.  (+info)

Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. (26/1459)

Clinical studies have shown that aquaporin-2 (AQP2), the vasopressin-regulated water channel, is excreted in the urine, and that the excretion increases in response to vasopressin. However, the cellular mechanisms involved in AQP2 excretion are unknown, and it is unknown whether the excretion correlates with AQP2 levels in kidney or levels in the apical plasma membrane. The present study was undertaken to clarify these issues. Immunoblotting of rat urine samples revealed significant excretion of AQP2, whereas AQP3, being a basolateral aquaporin in the same cells, was undetectable. Thus, there was a nonproportional excretion of AQP2 and AQP3 (compared with kidney levels), indicating that AQP2 is excreted predominantly via a selective apical pathway and not by whole cell shedding. Urinary AQP2 was associated with small vesicles, membrane fragments, and multivesicular bodies as determined by immunoelectron microscopy and negative staining techniques. In rats with normal water supply, daily urinary excretion of AQP2 was 3.9+/-0.9% (n = 6) of total kidney expression. Treatment with desmopressin acetate subcutaneously caused a fourfold increase in urinary excretion of AQP2 during 8 h. Forty-eight hours of thirsting, known to increase endogenous vasopressin secretion, resulted in a three-fold increase in kidney AQP2 levels but urinary excretion increased ninefold to 15+/-3% (n = 6) of AQP2 in kidney of thirsted rats. Moreover, rats that were thirsted for 48 h and subsequently allowed free access to water for 24 h produced a decrease in urinary AQP2 excretion to 38+/-15% (n = 6) of that during thirsting. In Brattleboro rats or lithium-treated normal rats completely lacking vasopressin action, and hence having extremely low levels of AQP2 in the apical plasma membrane, AQP2 was undetectable in urine. Thus, conditions with known altered vasopressin levels and altered levels of AQP2 in the apical plasma membrane were associated with corresponding major changes in AQP2 urine excretion. In contrast, in such conditions, kidney AQP2 levels and urinary AQP2 excretion did not show a proportional relationship.  (+info)

The transcription factor Sp3 interacts with promoter elements of the lens specific MIP gene. (27/1459)

PURPOSE: To characterize the cis regulatory elements and their interaction with transcription factors responsible for the lens specific expression of the MIP gene, which encodes the Major Intrinsic Protein of the lens fiber membranes. METHODS: Study interaction of factors present in newborn mouse lens nuclear extracts with DNA fragments corresponding to mouse MIP gene 5' flanking sequence by electrophoresis mobility shift assay (EMSA) and DNase I footprinting. RESULTS: We found a high degree of identity in the first 100 bp of 5' flanking sequence of mice and humans, however, a lower degree of conservation is observed further upstream. We have found by DNase I footprinting analysis that lens specific factors may interact with the first 100 bp of 5' flanking sequence. A domain containing an E box, conserved in mouse and human, may interact with a lens specific factor. However, general factors may interact with a NF-1 binding site. An overlapping GC and CT box is present in the mouse MIP gene. In the human MIP gene GC and CT boxes are found in different domains of the MIP gene promoter. Both CT boxes interact with factors present in lens nuclear extracts including Sp3. They are able to interact with purified Sp1but not with Sp1 present in mouse lens nuclear extracts. CONCLUSIONS: The transcription factor Sp3 may play an important role in regulating MIP gene expression in the lens.  (+info)

Effects of missense mutations on rat aquaporin-2 in LLC-PK1 porcine kidney cells. (28/1459)

BACKGROUND: Mutations in the aquaporin-2 (AQP2) gene have been found in families with nephrogenic diabetes insipidus (NDI), but the pathophysiological mechanisms of how mutant AQP2 causes the disease are still not clear. METHODS: Wild-type (WT) AQP2 and four mutants-T126M, A147T, R187C, and S216P-were transiently expressed in LLC-PK1 cells. The osmotic water permeability of LLC-PK1 cells expressing AQP2 mutants was determined by stopped-flow light-scattering microphotometry. Cell surface expression, subcellular localization, and effects of vasopressin stimulation were examined by surface biotin labeling and confocal immunohistochemistry. RESULTS: The osmotic water permeability (Pf) of cells expressing WT increased significantly after vasopressin treatment, whereas the Pf of cells expressing T126M A147T, R187C, and S216P was not significantly different from that of the control even after vasopressin stimulation. Confocal immunohistochemistry demonstrated distribution of WT and A147T in early/recycling endosomal compartments and vasopressin-responsive translocation and surface expression. In contrast, stainings of T126M, R187C, and S216P were similar to that of Grp78, indicating that these mutants were misassembled and retarded in the endoplasmic reticulum. CONCLUSION: Our results indicated that the intracellular distribution and vasopressin-regulated trafficking of A147T is intact, in contrast to the other three mutants, of which both were impaired. Thus, it is conceivable that the disruption of the AQP2 channel function accounts for the pathogenesis of A147T NDI, whereas trafficking defects account for that of the other types, suggesting that the pathophysiology of AQP2-related NDI is heterogeneous.  (+info)

Transport of water and glycerol in aquaporin 3 is gated by H(+). (29/1459)

Aquaporins (AQPs) were expressed in Xenopus laevis oocytes in order to study the effects of external pH and solute structure on permeabilities. For AQP3 the osmotic water permeability, L(p), was abolished at acid pH values with a pK of 6.4 and a Hill coefficient of 3. The L(p) values of AQP0, AQP1, AQP2, AQP4, and AQP5 were independent of pH. For AQP3 the glycerol permeability P(Gl), obtained from [(14)C]glycerol uptake, was abolished at acid pH values with a pK of 6.1 and a Hill coefficient of 6. Consequently, AQP3 acts as a glycerol and water channel at physiological pH, but predominantly as a glycerol channel at pH values around 6.1. The pH effects were reversible. The interactions between fluxes of water and straight chain polyols were inferred from reflection coefficients (sigma). For AQP3, water and glycerol interacted by competing for titratable site(s): sigma(Gl) was 0.15 at neutral pH but doubled at pH 6.4. The sigma values were smaller for polyols in which the -OH groups were free to form hydrogen bonds. The activation energy for the transport processes was around 5 kcal mol(-1). We suggest that water and polyols permeate AQP3 by forming successive hydrogen bonds with titratable sites.  (+info)

Novel method for evaluation of the oligomeric structure of membrane proteins. (30/1459)

Assessment of the quaternary structure of membrane proteins by PAGE has been problematic owing to their relatively poor solubility in non-dissociative detergents. Here we report that several membrane proteins can be readily solubilized in their native quaternary structure with the use of the detergent perfluoro-octanoic acid (PFO). Further, PFO can be used with PAGE, thereby providing a novel, accessible tool with which to assess the molecular mass of homo-multimeric protein complexes.  (+info)

Lack of vasopressin-independent upregulation of AQP-2 gene expression in homozygous Brattleboro rats. (31/1459)

Arginine vasopressin (AVP) plays an important role in the expression of aquaporin (AQP-2) in the collecting duct. The present study was undertaken to determine whether there is an AVP-independent regulation of AQP-2 gene expression in homozygous Brattleboro rats in which endogenous AVP is absent. Exogenous administration of 1-deamino-8-D-AVP produced an antidiuresis and expressed AQP-2 mRNA and AQP-2 protein in the renal medulla of the homozygous Brattleboro rats. Twelve hours of water deprivation produced severe dehydration in the homozygous Brattleboro rats, such that urinary osmolality increased from 200 to 649 mosmol/kgH(2)O. However, no increase in AQP-2 mRNA expression was observed after this dehydration, and the medullary tissue content and urinary excretion of AQP-2 also remained unchanged. Increases in AQP-2 mRNA expression and AQP-2 protein were evident in Long-Evans rats after 64 h of water deprivation, with a severity of dehydration almost equal to the 12-h dehydrated, homozygous Brattleboro rats. These results indicate the lack of an AVP-independent mechanism for upregulating AQP-2 mRNA expression in renal collecting duct cells.  (+info)

Decreased renal Na-K-2Cl cotransporter abundance in mice with heterozygous disruption of the G(s)alpha gene. (32/1459)

Transport processes along the nephron are regulated in part by hormone stimulation of adenylyl cyclases mediated by the heterotrimeric G protein G(s). To assess the role of this pathway in the regulation of Na-K-2Cl cotransporter abundance in the renal thick ascending limb (TAL), we studied mice with heterozygous disruption of the Gnas gene, which codes for the alpha-subunit of G(s). Outer medullary G(s)alpha protein abundance (as assessed by semiquantitative immunoblotting) and glucagon-stimulated cAMP production were significantly reduced in the heterozygous G(s)alpha knockout mice (GSKO) relative to their wild-type (WT) littermates. Furthermore, Na-K-2Cl cotransporter protein abundance in the outer medulla was significantly reduced (band density, 48% of WT). In addition, GSKO mice had a significantly reduced (72% of WT) urinary osmolality in response to a single injection of 1-deamino-[8-D-arginine]vasopressin (DDAVP), a vasopressin analog. In contrast, outer medullary protein expression of the type 3 Na/H exchanger (NHE-3) or Tamm-Horsfall protein did not differ between the GSKO mice and their WT littermates. However, abundance of type VI adenylyl cyclase was markedly decreased in the outer medullas of GSKO mice, suggesting a novel feed-forward regulatory mechanism. We conclude that expression of the Na-K-2Cl cotransporter of the TAL is dependent on G(s)alpha-mediated hormone stimulation, most likely due to long-term changes in cellular cAMP levels.  (+info)