Renal concentrating defect in mice lacking group IV cytosolic phospholipase A(2). (17/452)

Eicosanoids regulate various cellular functions that are important in physiological and pathophysiological processes. Arachidonic acid is released from membranes by phospholipase A(2) (PLA(2)) activity. Activated macrophages derived from mice lacking the 85-kDa group IV cytosolic PLA(2) (cPLA(2)) have a markedly reduced release of prostaglandin E(2) and leukotrienes B(4) and C(4). Under basal conditions and after furosemide, urinary prostaglandin E(2) excretion is reduced in cPLA(2)-knockout (cPLA(2)(-/-)) mice. Serum creatinine, Na(+), K(+), and Ca(2+) concentrations, glomerular filtration rate, and fractional excretion of Na(+) and K(+) are not different in cPLA(2)(-/-) and cPLA(2)(+/+) mice. Maximal urinary concentration is lower in 48-h water-deprived cPLA(2)(-/-) mice compared with cPLA(2)(+/+) animals (1,934 +/- 324 vs. 3,541 +/- 251 mmol/kgH(2)O). Plasma osmolality is higher (337 +/- 5 vs. 319 +/- 3 mmol/kgH(2)O) in cPLA(2)(-/-) mice that lose a greater percentage of their body weight (20 +/- 2 vs. 13 +/- 1%) compared with cPLA(2)(+/+) mice after water deprivation. Vasopressin does not correct the concentrating defect. There is progressive reduction in urinary osmolality with age in cPLA(2)(-/-) mice. Membrane-associated aquaporin-1 (AQP1) expression, identified by immunocytochemical techniques, is reduced markedly in proximal tubules of older cPLA(2)(-/-) animals but is normal in thin descending limbs. However, Western blot analysis of kidney cortical samples revealed an equivalent AQP1 signal intensity in cPLA(2)(+/+) and cPLA(2)(-/-) animals. Young cPLA(2)(-/-) mice have normal proximal tubule AQP1 staining. Collecting duct AQP2, -3, and -4 were normally expressed in the cPLA(2)(-/-) mice. Thus mice lacking cPLA(2) develop an age-related defect in renal concentration that may be related to abnormal trafficking and/or folding of AQP1 in the proximal tubule, implicating cPLA(2) in these processes.  (+info)

Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. (18/452)

Diabetes mellitus (DM) is associated with osmotic diuresis and natriuresis. At day 15, rats with DM induced by streptozotocin (n = 13) had severe hyperglycemia (27.1 +/- 0.4 vs. 4.7 +/- 0.1 mM in controls) and had a fivefold increase in water intake (123 +/- 5 vs. 25 +/- 2 ml/day) and urine output. Semiquantitative immunoblotting revealed a significant increase in inner medullary AQP2 (201 +/- 12% of control rats, P < 0.05) and phosphorylated (Ser(256)) AQP2 (p-AQP2) abundance (299 +/- 32%) in DM rats. Also, the abundance of inner medullary AQP3 was markedly increased to 171 +/- 19% of control levels (100 +/- 4%, n = 7, P < 0.05). In contrast, the abundance of whole kidney AQP1 (90 +/- 3%) and inner medullary AQP4 (121 +/- 16%) was unchanged in rats with DM. Immunoelectron microscopy further revealed an increased labeling of AQP2 in the apical plasma membrane of collecting duct principal cells (with less labeling in the intracellular vesicles) of DM rats, indicating enhanced trafficking of AQP2 to the apical plasma membrane. There was a marked increase in urinary sodium excretion in DM. Only Na(+)/H(+) exchanger NHE3 was downregulated (67 +/- 10 vs. 100 +/- 11%) whereas there were no significant changes in abundance of type 2 Na-phosphate cotransporter (128 +/- 6 vs. 100 +/- 10%); the Na-K-2Cl cotransporter (125 +/- 19 vs. 100 +/- 10%); the thiazide-sensitive Na-Cl cotransporter (121 +/- 9 vs. 100 +/- 10%); the alpha(1)-subunit of the Na-K-ATPase (106 +/- 7 vs. 100 +/- 5%); and the proximal tubule Na-HCO(3) cotransporter (98 +/- 16 vs. 100 +/- 7%). In conclusion, DM rats had an increased AQP2, p-AQP2, and AQP3 abundance as well as high AQP2 labeling of the apical plasma membrane, which is likely to represent a vasopressin-mediated compensatory increase in response to the severe polyuria. In contrast, there were no major changes in the abundance of AQP1, AQP4, and several major proximal and distal tubule Na(+) transporters except NHE3 downregulation, which may participate in the increased sodium excretion.  (+info)

Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. (19/452)

In this study, we have investigated the expression of aquaporin 4 during blood-brain barrier development in the optic tectum of chick embryos and newly hatched chicks, by means of western-blot, reverse transcriptase-polymerase chain reaction, immunohistochemistry, and freeze-fracture and high-resolution immunogold electron microscopy. In the optic tecta of day-14 embryos, western blot analysis revealed an approx. 30 kDa band, immunoreactive for aquaporin-4, which was increased in day-20 embryos and in chicks. Semi-quantitative reverse transcriptase chain reaction experiments showed that there was already a high level of aquaporin-4 mRNA in day-9 embryos as well as in the subsequent stages and in newly hatched chicks. Immunohistochemically, reactivity for aquaporin-4 was detected in the optic tectum of day-14 embryos; similar results were obtained in telencephalon and cerebellum. Ultrastructurally, the microvessels of the tectum showed immunoreactivity for aquaporin-4 on the astroglial endfeet, which discontinuously surrounded endothelial cells joined by immature tight junctions. In the tectum, telencephalon and cerebellum of 20-day embryos and chicks, aquaporin-4 strongly labeled the ependymal cells and the subpial glial membranes, as well as the bodies and processes of astroglial cells. A continuous aquaporin-4 staining was found around the microvessel endothelial cells, which were sealed off from one another by extensive tight junctions. A complete astrocytic sheath, labeled by anti-aquaporin-4 gold particles, enveloped the endothelium-pericyte layer. Orthogonal arrays of particles were observed on fractured astrocytic membranes, starting from embryonic day 14 when the aquaporin-4 immunogold staining revealed clusters of gold particles, often forming square or rectangular clusters. The results showed that aquaporin-4 expression and organization of the intramembrane particles in orthogonal arrays followed the same temporal sequence. Finally, the lipopolysaccharide, a substance that induces blood-brain barrier disruption, determines a remarkable reduction in aquaporin-4 labeling, expressed by a few aquaporin-4 gold particles attached on swollen perivascular glial membranes. All these data show that aquaporin-4 expression occurs in the chick embryonic brain, in parallel with maturation and functioning of the blood-brain barrier and suggest that there is a close relationship between water transport regulation and brain development.  (+info)

Aquaporin-1 expression in visceral smooth muscle cells of female rat reproductive tract. (20/452)

The aquaporins (AQ-s) are a group of intrinsic membrane proteins which facilitate movement of water across cell membranes; their recent identification in the kidney has led to the reappraisal of the mechanisms and pathways of water movement across epithelia. Aquaporin-1, (CHIP-28) is reported distributed in cardiac myocytes and vascular smooth muscle cells of large arteries. A related protein, AQ-4, has been identified in the sarcolemma of skeletal muscle fibres. We report aquaporin expression in the cell membrane of smooth muscle cells of the rat genital tract; fluorescence immunohistochemistry of rat uterine (fallopian) tube and vagina demonstrated AQ-1 in visceral smooth muscle of these tissues. In the uterine tube, AQ-1 labelling is most pronounced in the innermost longitudinal and the inner cells of the circular muscle layer and is absent from the outer longitudinal muscle layer of the myosalpinx. The possibility of a specific role for AQ-1 in tubal transport by altering the tubal luminal diameter during the estrus cycle is suggested.  (+info)

Absence of aquaporin-4 water channels from kidneys of the desert rodent Dipodomys merriami merriami. (21/452)

Recently, we found that aquaporin-4 (AQP4) is expressed in the S3 segment of renal proximal tubules of mice but not in rat proximal tubules. Because mice have relatively larger papillae than rats, it was proposed that the renal distribution of AQP4 in various species could be related to their maximum urinary concentrating ability. Therefore, kidneys and other tissues of Merriam's desert kangaroo rat, Dipodomys merriami merriami, which produce extremely concentrated urine (up to 5,000 mosmol/kgH(2)O), were examined for AQP4 expression and localization. Contrary to our expectation, AQP4 immunostaining was undetectable in any region of the kidney, and the absence of AQP4 protein was confirmed by Western blotting. By freeze fracture electron microscopy, orthogonal arrays of intramembraneous particles (OAPs) were not detectable in plasma membranes of principal cells and proximal tubules. However, AQP4 protein was readily detectable in gastric parietal and brain astroglial cells. Northern blotting failed to detect AQP4 mRNA in kangaroo rat kidneys, whereas both in situ hybridization and RT-PCR experiments did reveal AQP4 mRNA in collecting ducts and proximal tubules of the S3 segment. These results suggest that renal expression of AQP4 in the kangaroo rat kidney is regulated at the transcriptional or translational level, and the absence of AQP4 may be critical for the extreme urinary concentration that occurs in this species.  (+info)

A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. (22/452)

The brain contains an intrinsic vasopressin fiber system the function of which is unknown. It has been demonstrated recently that astrocytes express high levels of a water channel, aquaporin-4 (AQP4). Because vasopressin is known to regulate aquaporin expression and translocation in kidney collecting ducts and thereby control water reabsorption, we hypothesized that vasopressin might serve a similar function in the brain. By recording intrinsic optical signals in an acute cortical slice preparation we showed that evoked neuronal activity generates a radial water flux in the neocortex. The rapid onset and high capacity of this flux suggest that it is mediated through the AQP4-containing astrocytic syncytium that spans the entire thickness of the neocortical mantle. Vasopressin and vasopressin receptor V1a agonists were found to facilitate this flux. V1a antagonists blocked the facilitatory effect of vasopressin and reduced the water flux even in the absence of any exogenous agonist. V2 agonists or antagonists had no effect. These data suggest that vasopressin and V1a receptors play a crucial role in the regulation of brain water and ion homeostasis, most probably by modulating aquaporin-mediated water flux through astrocyte plasma membranes.  (+info)

Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. (23/452)

The association of pericytes (PCs) to newly formed blood vessels has been suggested to regulate endothelial cell (EC) proliferation, survival, migration, differentiation, and vascular branching. Here, we addressed these issues using PDGF-B-- and PDGF receptor-beta (PDGFR-beta)--deficient mice as in vivo models of brain angiogenesis in the absence of PCs. Quantitative morphological analysis showed that these mutants have normal microvessel density, length, and number of branch points. However, absence of PCs correlates with endothelial hyperplasia, increased capillary diameter, abnormal EC shape and ultrastructure, changed cellular distribution of certain junctional proteins, and morphological signs of increased transendothelial permeability. Brain endothelial hyperplasia was observed already at embryonic day (E) 11.5 and persisted throughout development. From E 13.5, vascular endothelial growth factor-A (VEGF-A) and other genes responsive to metabolic stress became upregulated, suggesting that the abnormal microvessel architecture has systemic metabolic consequences. VEGF-A upregulation correlated temporally with the occurrence of vascular abnormalities in the placenta and dilation of the heart. Thus, although PC deficiency appears to have direct effects on EC number before E 13.5, the subsequent increased VEGF-A levels may further abrogate microvessel architecture, promote vascular permeability, and contribute to formation of the edematous phenotype observed in late gestation PDGF-B and PDGFR-beta knock out embryos.  (+info)

Role of aquaporin water channels in airway fluid transport, humidification, and surface liquid hydration. (24/452)

Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport-related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54-56% efficient in wild-type mice, and reduced by only 3-4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3-5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 +/- 5 microm and [Na(+)] was 115 +/- 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by approximately 40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption.  (+info)