Evidence that the transmembrane biogenesis of aquaporin 1 is cotranslational in intact mammalian cells. (65/469)

Most polytopic membrane proteins are believed to integrate into the membrane of the endoplasmic reticulum (ER) cotranslationally. However, recent studies with Xenopus oocytes and dog pancreatic microsomes have suggested that this is not the case for human aquaporin 1 (AQP1). These experiments indicate that membrane-spanning segments (MSSs) 2 and 4 of AQP1 do not integrate into the membrane cotranslationally so that this protein initially adopts a four MSS topology. A later maturation event involving a 180-degree rotation of MSS 3 from an N(lum)/C(cyt) to an N(cyt)/C(lum) orientation and the concomitant integration of MSSs 2 and 4 into the membrane results in the final six MSS topology. Here we examine the biogenesis of AQP1 in the human embryonic kidney cell line HEK-293T. To do this, we constructed an expression vector for a fusion protein consisting of the enhanced green fluorescent protein followed by an insertion site for AQP1 sequences and a C-terminal glycosylation tag. We then transiently transfected HEK-293T cells with this vector containing the AQP1 sequence truncated after each MSS. Glycosylation of the C-terminal tag was used to monitor its location relative to the ER lumen and consequently the membrane integration and orientation of successive MSSs. In contrast to previous studies our results indicate that AQP1 integrates into the ER membrane cotranslationally in intact HEK-293T cells.  (+info)

Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. (66/469)

Two aquaporin (AQP)-type water channels are expressed in mammalian cornea, AQP1 in endothelial cells and AQP5 in epithelial cells. To test whether these aquaporins are involved in corneal fluid transport and transparency, we compared corneal thickness, water permeability, and response to experimental swelling in wild type mice and transgenic null mice lacking AQP1 and AQP5. Corneal thickness in fixed sections was remarkably reduced in AQP1 null mice and increased in AQP5 null mice. By z-scanning confocal microscopy, corneal thickness in vivo was (in microm, mean +/- S.E., n = 5 mice) 123 +/- 1 (wild type), 101 +/- 2 (AQP1 null), and 144 +/- 2 (AQP5 null). After exposure of the external corneal surface to hypotonic saline (100 mosm), the rate of corneal swelling (5.0 +/- 0.3 microm/min, wild type) was reduced by AQP5 deletion (2.7 +/- 0.1 microm/min). After exposure of the endothelial surface to hypotonic saline by anterior chamber perfusion, the rate of corneal swelling (7.1 +/- 1.0 microm/min, wild type) was reduced by AQP1 deletion (1.6 +/- 0.4 microm/min). Base-line corneal transparency was not impaired by AQP1 or AQP5 deletion. However, the recovery of corneal transparency and thickness after hypotonic swelling (10-min exposure of corneal surface to hypotonic saline) was remarkably delayed in AQP1 null mice with approximately 75% recovery at 7 min in wild type mice compared with 5% recovery in AQP1 null mice. Our data indicate that AQP1 and AQP5 provide the principal routes for corneal water transport across the endothelial and epithelial barriers, respectively. The impaired recovery of corneal transparency in AQP1 null mice provides evidence for the involvement of AQP1 in active extrusion of fluid from the corneal stroma across the corneal endothelium. The up-regulation of AQP1 expression and/or function in corneal endothelium may reduce corneal swelling and opacification following injury.  (+info)

New roles for old holes: ion channel function in aquaporin-1. (67/469)

Mammalian aquaporins are part of the diverse major intrinsic protein family of water and solute channels. Intriguing links exist in structural and functional properties between aquaporins and ion channels. A novel role for aquaporin-1 as a gated ion channel reshapes our current views of this ancient family of transmembrane channel proteins.  (+info)

Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line. (68/469)

BACKGROUND: Aquaporin-1 (AQP1) channels are constitutively active water channels that allow rapid transmembrane osmotic water flux, and also serve as cyclic-GMP-gated ion channels. Tetraethylammonium chloride (TEA; 0.05 to 10 mM) was shown previously to inhibit the osmotic water permeability of human AQP1 channels expressed in Xenopus oocytes. The purpose of the present study was to determine if TEA blocks osmotic water flux of native AQP1 channels in kidney, and recombinant AQP1 channels expressed in a kidney derived MDCK cell line. We also demonstrate that TEA does not inhibit the cGMP-dependent ionic conductance of AQP1 expressed in oocytes, supporting the idea that water and ion fluxes involve pharmacologically distinct pathways in the AQP1 tetrameric complex. RESULTS: TEA blocked water permeability of AQP1 channels in kidney and kidney-derived cells, demonstrating this effect is not limited to the oocyte expression system. Equivalent inhibition is seen in MDCK cells with viral-mediated AQP1 expression, and in rat renal descending thin limbs of Henle's loops which abundantly express native AQP1, but not in ascending thin limbs which do not express AQP1. External TEA (10 mM) does not block the cGMP-dependent AQP1 ionic conductance, measured by two-electrode voltage clamp after pre-incubation of oocytes in 8Br-cGMP (10-50 mM) or during application of the nitric oxide donor, sodium nitroprusside (2-4 mM). CONCLUSIONS: TEA selectively inhibits osmotic water permeability through native and heterologously expressed AQP1 channels. The pathways for water and ions in AQP1 differ in pharmacological sensitivity to TEA, and are consistent with the idea of independent solute pathways within the channel structure. The results confirm the usefulness of TEA as a pharmacological tool for the analysis of AQP1 function.  (+info)

Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. (69/469)

The swelling of secretory vesicles has been implicated in exocytosis, but the underlying mechanism of vesicle swelling remains largely unknown. Zymogen granules (ZGs), the membrane-bound secretory vesicles in exocrine pancreas, swell in response to GTP mediated by a G(alpha)i3 protein. Evidence is presented here that the water channel aquaporin-1 (AQP1) is present in the ZG membrane and participates in rapid GTP-induced vesicular water gating and swelling. Isolated ZGs exhibit low basal water permeability. However, exposure of granules to GTP results in a marked potentiation of water entry. Treatment of ZGs with the known water channel inhibitor Hg2+ is accompanied by a reversible loss in both the basal and GTP-stimulatable water entry and vesicle swelling. Introduction of AQP1-specific antibody raised against the carboxyl-terminal domain of AQP1 blocks GTP-stimulable swelling of vesicles. Our results demonstrate that AQP1 associated at the ZG membrane is involved in basal as well as GTP-induced rapid gating of water in ZGs of the exocrine pancreas.  (+info)

Water transporters: how so fast yet so selective? (70/469)

A high-resolution X-ray structure of an aquaporin has revealed water molecules bound within the transmembrane pore and provided new clues to the mechanisms of rapid water transport and high selectivity in this important class of membrane proteins.  (+info)

PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. (71/469)

The molecular functions of several aquaporins are well characterized (e.g., by analysis of aquaporin-expressing Xenopus oocytes). However, their significance in the physiology of water transport in multicellular organisms remains uncertain. The tobacco plasma membrane aquaporin NtAQP1 was used to elucidate this issue. By comparing antisense plants that were inhibited in NtAQP1 expression with control plants, we found evidence for NtAQP1 function in cellular and whole-plant water relations. The consequences of a decrease in cellular water permeability were determined by measurement of transpiration rate and stem and leaf water potential as well as growth experiments under extreme soil water depletion. Plants impaired in NtAQP1 expression showed reduced root hydraulic conductivity and lower water stress resistance. In conclusion, our results emphasize the importance of symplastic aquaporin-mediated water transport in whole-plant water relations.  (+info)

Expression, localization, and regulation of aquaporin-1 to -3 in rat urothelia. (72/469)

Although mammalian urothelia are generally considered impermeable to constituents of urine, in vivo studies in several species indicate urothelial transport of water and solutes under certain conditions. This study investigates the expression, localization, and regulation of aquaporin (AQP)-1, -2, and -3 in ureteral and bladder tissues in 48-h dehydrated and water-loaded female Wistar rats. Immunoblots of homogenates of whole ureter and bladder identified characteristic approximately 28- and 35- to 44-kDa bands for AQP-1, -2, and -3. AQP-1 was localized to capillary and arteriole endothelial cells, whereas AQP-2 and -3 circumferentially lined the epithelial cell membranes except for the apical membrane of the epithelial cells adjacent to the lumens of both ureter and bladder. AQP-2 was also present in epithelial cell cytoplasm. Dehydration resulted in 160-200% increases of AQP-3 signal and 24-49% increases of AQP-2 signal but no change in AQP-1 signal on immunoblots of homogenates of ureters and bladders. AQPs in genitourinary tract urothelia likely play a role in the regulation of epithelial cell volume and osmolality and may play a role in bulk water movement across urothelia.  (+info)