Apaf-1 deficiency and neural tube closure defects are found in fog mice. (73/406)

The forebrain overgrowth mutation (fog) was originally described as a spontaneous autosomal recessive mutation mapping to mouse chromosome 10 that produces forebrain defects, facial defects, and spina bifida. Although the fog mutant has been characterized and available to investigators for several years, the underlying mutation causing the pathology has not been known. Because of its phenotypic resemblance to apoptotic protease activating factor-1 (Apaf-1) knockout mice, we have investigated the possibility that the fog mutation is in the Apaf-1 gene. Allelic complementation, Western blot analysis, and caspase activation assays indicate that fog mutant mice lack Apaf-1 activity. Northern blot and reverse transcription-PCR analysis show that Apaf-1 mRNA is aberrantly processed, resulting in greatly reduced expression levels of normal Apaf-1 mRNA. These findings are strongly suggestive of the fog mutation being a hypomorphic Apaf-1 defect and implicate neural progenitor cell death in the pathogenesis of spina bifida-a common human congenital malformation. Because a complete deficiency in Apaf-1 usually results in perinatal lethality and fog/fog mice more readily survive into adulthood, these mutants serve as a valuable model with which apoptotic cell death can be studied in vivo.  (+info)

Bax translocation is crucial for the sensitivity of leukaemic cells to etoposide-induced apoptosis. (74/406)

Bax translocation from cytosol to mitochondria is believed to be a crucial step for triggering cytochrome c release from mitochondria. However, it is unclear whether Bax translocation is associated with Bax induction by DNA damaging agents. The induction of Bax in response to DNA damaging agents has been considered to be linked with p53. In this study, we used the p53 negative human chronic myeloid leukaemia K562 cell line. Bax up-regulation occurred at the whole cell level after DNA damage induced by etoposide. However, after incubation with etoposide, Bax failed to translocate to mitochondria and as a result, the apoptotic process was blocked. A Bax stable transfectant, the K/Bax cell line, expressed more Bax protein in the cytosol, mitochondria and nuclei. This Bax overexpression induced cytochrome c release, a reduction of cytochrome c oxidase activity and mitochondrial membrane potential (Delta(Psi)m). However, Bax-induced apoptosis was blocked downstream of mitochondria in K562 cells. The increased levels of mitochondrial Bax sensitized cells to etoposide-induced activation of caspases-2, -3 and -9 and apoptosis. However, after transient transfection with the Apaf-1 gene, K/Bax cells were sensitized to etoposide-induced caspase activation and apoptosis to a larger extent compared with Bax or Apaf-1 transfection alone. We therefore conclude that two mechanisms contribute to the resistance of K562 cells to etoposide-induced apoptosis; firstly failure of Bax targeting to mitochondria and, secondly, deficiency of Apaf-1. Uncoupling of Bax translocation from Bax induction can occur in response to etoposide-induced DNA damage.  (+info)

An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. (75/406)

Adeno-associated virus (AAV) vector delivery of an Apaf-1-dominant negative inhibitor was tested for its antiapoptotic effect on degenerating nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. The wild-type caspase recruitment domain of Apaf-1 was used as a dominant negative inhibitor of Apaf-1 (rAAV-Apaf-1-DN-EGFP). An AAV virus vector was used to deliver it into the striatum of C57 black mice, and the animals were treated with MPTP. The number of tyrosine hydroxylase-positive neurons in the substantia nigra was not changed on the rAAV-Apaf-1-DN-EGFP injected side compared with the noninjected side. We also examined the effect of a caspase 1 C285G mutant as a dominant negative inhibitor of caspase 1 (rAAV-caspase-1-DN-EGFP) in the same model. However, there was no difference in the number of tyrosine hydroxylase-positive neurons between the rAAV-caspase-1-DN-EGFP injected side and the noninjected side. These results indicate that delivery of Apaf-1-DN by using an AAV vector system can prevent nigrostriatal degeneration in MPTP mice, suggesting that it could be a promising therapeutic strategy for patients with Parkinson's disease. The major mechanism of dopaminergic neuronal death triggered by MPTP seems to be the mitochondrial apoptotic pathway.  (+info)

Caspase-3 cleaves Apaf-1 into an approximately 30 kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex. (76/406)

Cytochrome c and dATP/ATP induce oligomerization of Apaf-1 into two distinct apoptosome complexes: an approximately 700 kDa complex, which recruits and activates caspases-9, -3 and -7, and an approximately 1.4 MDa complex, which recruits and processes caspase-9, but does not efficiently activate effector caspases. While searching for potential inhibitors of the approximately 1.4 MDa apoptosome complex, we observed an approximately 30 kDa Apaf-1 immunoreactive fragment that was associated exclusively with the inactive complex. We subsequently determined that caspase-3 cleaved Apaf-1 within its CED-4 domain (SVTD(271) downward arrowS) in both dATP-activated lysates and apoptotic cells to form a prominent approximately 30 kDa (p30) N-terminal fragment. Purified recombinant Apaf-1 p30 fragment weakly inhibited dATP-dependent activation of caspase-3 in vitro. However, more importantly, prevention of endogenous formation of the p30 fragment did not stimulate latent effector caspase processing activity in the large complex. Similarly, the possibility that XIAP, an inhibitor of apoptosis protein (IAP), was responsible for the inactivity of the approximately 1.4 MDa complex was excluded as immunodepletion of this caspase inhibitor failed to relieve the inhibition. However, selective proteolytic digestion of the approximately 1.4 MDa and approximately 700 kDa complexes showed that Apaf-1 was present in conformationally distinct forms in these two complexes. Therefore, the inability of the approximately 1.4 MDa apoptosome complex to process effector caspases most likely results from inappropriately folded or oligomerized Apaf-1.  (+info)

Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. (77/406)

In many forms of apoptosis, cytochrome c released from mitochondria induces the oligomerization of Apaf-1 to form a caspase-activating apoptosome complex. Activation of lysates in vitro with dATP and cytochrome c results in the formation of an active caspase-processing approximately 700-kDa apoptosome complex, which predominates in apoptotic cells, and a relatively inactive approximately 1.4-MDa complex. We now demonstrate that assembly of the active complex is suppressed by normal intracellular concentrations of K(+). Using a defined apoptosome reconstitution system with recombinant Apaf-1 and cytochrome c, K(+) also inhibits caspase activation by abrogating Apaf-1 oligomerization and apoptosome assembly. Once assembled, the apoptosome is relatively insensitive to the effects of ionic strength and processes/activates effector caspases. The inhibitory effects of K(+) on apoptosome formation are antagonized in a concentration-dependent manner by cytochrome c. These studies support the hypothesis that the normal intracellular concentrations of K(+) act to safeguard the cell against inappropriate formation of the apoptosome complex, caused by the inadvertent release of small amounts of cytochrome c. Thus, the assembly and activation of the apoptosome complex in the cell requires the rapid and extensive release of cytochrome c to overcome the inhibitory effects of normal intracellular concentrations of K(+).  (+info)

Diva/Boo is a negative regulator of cell death in human glioma cells. (78/406)

Diva is a novel proapoptotic member of the Bcl-2 protein family which binds apoptosis activating factor-1 (APAF-1). Diva is identical with Boo which was identified as a novel antiapoptotic Bcl-2 family protein. Here, we report that Diva promotes the cell cycle exit of human glioma cells in response to serum deprivation and inhibits apoptosis of these cells induced by CD95 ligand or chemotherapeutic drugs. In glioma cells, Diva interferes with apoptotic signaling downstream of cytochrome c release, but upstream of caspase activation, consistent with an inhibitory effect on the mitochondrial amplification step involving the apoptosome and APAF-1.  (+info)

APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. (79/406)

The expression of genes involved in p53-mediated apoptosis was studied using cDNA microarray after treating isogenic cell lines with either ionizing radiation or doxorubicin. Most of the known p53 transcriptional activation target genes clustered in a functional category defined by early and p53-dependent induction, regardless of the type of stress. Apoptotic protease activating factor-1 (APAF-1) emerged from this analysis as a novel p53 target gene. Genomic sequences upstream of the APAF-1 transcription start site contain a classic p53-responsive element that bound to p53. Consistently, p53 directly induced APAF-1 gene expression. Furthermore, DNA damage-mediated induction of APAF-1 mRNA and protein expression, accompanied by apoptosis, were strictly dependent on wild-type p53 function. These data are consistent with the hypothesis that APAF-1 is an essential downstream effector of p53-mediated apoptosis.  (+info)

Apaf-1 overexpression partially overcomes apoptotic resistance in a cisplatin-selected HeLa cell line. (80/406)

Inhibition of caspase-3-mediated apoptosis has been hypothesized to be associated with chemoresistance. Investigations of apoptosis revealed that cytosolic cytochrome c is associated with a complex of apoptotic protease activating factor-1 (Apaf-1), an adapter molecule, and caspase-9 to activate caspase-3. However, whether these apoptotic molecules are involved in acquired cisplatin resistance is not understood. The present work shows reduced activation of caspase-3 and apoptosis in a cisplatin-selected HeLa cell line. Ac-DEVD-CHO, a caspase-3 inhibitor, inhibited cisplatin-induced apoptosis about 60-70% in both cell lines. Ac-LEHD-CHO, a caspase-9 inhibitor or Ac-IETD-CHO, a caspase-8 inhibitor, inhibited cisplatin-induced caspase-3 activation and apoptosis similarly in both cell lines. In addition, cisplatin induced the activation of caspase-9, the upstream activator of caspase-3, in a dose-dependent manner, and the activation of caspase-9 was less induced in resistant cells. The accumulation of cytosolic cytochrome c, an activator of caspase-9, and the induction of the mitochondrial membrane-associated voltage-dependent anion channel were also reduced in cisplatin-resistant cells. However, the concentration of Bcl-2 family proteins in cisplatin-resistant cells was normal. The concentration of Apaf-1 was unaltered in both cell lines. Increasing the cellular concentration of Apaf-1 through the transient expression of the gene increased the induction of apoptosis in resistant cells, associated with enhanced activation of caspase-9, caspase-3 and DNA fragmentation factor. Regression analysis reveals that the modification factor, the ratio of the slope in the linear range of the dose-response curve with Apaf-1 to the slope without Apaf-1, is 1.5 and 4.75 in the HeLa and cisplatin-resistant HeLa cells, respectively. These results indicate that apoptosis and caspases are less induced in cisplatin-selected HeLa cells. They also suggest that ectopic overexpression of Apaf-1 may partially reverse the acquired cisplatin resistance.  (+info)