(1/1461) The binding of human lactoferrin to mouse peritoneal cells.

Human iron-saturated Lf (FeLf), which was labeled with 125I or 50Fe, was found to combine with the membrane of mouse peritoneal cells (MPC) which consisted of 70% macrophages. The following experimental data suggested the involvement of a specific receptor. (a) The binding of FeLf to MPC reached a saturation point. (b) The binding of radioactive FeLf was inhibited by preincubating the cells with cold FeLf but not with human Tf, human aggregated and nonaggregated IgG, or beef heart cytochrome c (c) Succinylation and carbamylation of FeLf resulted in a loss of its inhibiting activity on the binding of radioactive FeLf. Removal of neuraminic acid from FeLf increased its inhibitory activity. (d) The ability of apoLf to inhibit the binding of FeLf to MPC was significantly lower than that of FeLf. The existence of a Lf receptor capable of concentrating Lf released from neutrophils on the membrane of macrophages could explain the apparent blockade of the release of iron from the reticuloendothelial system, which accounts for the hyposideremia of inflammation. A receptor for FeLf was also found on mouse peritoneal lymphocytes. The affinity constant of FeLf for both lymphocytes and macrophages was 0.9 X 12(6) liter/mol. Howerver, macrophages bound three times more FeLf molecules (20 X 10(6)) per cell than did lymphocytes (7 X 10(6)).  (+info)

(2/1461) Folding of apocytochrome c induced by the interaction with negatively charged lipid micelles proceeds via a collapsed intermediate state.

Unfolded apocytochrome c acquires an alpha-helical conformation upon interaction with lipid. Folding kinetic results below and above the lipid's CMC, together with energy transfer measurements of lipid bound states, and salt-induced compact states in solution, show that the folding transition of apocytochrome c from the unfolded state in solution to a lipid-inserted helical conformation proceeds via a collapsed intermediate state (I(C)). This initial compact state is driven by a hydrophobic collapse of the polypeptide chain in the absence of the heme group and may represent a heme-free analogue of an early compact intermediate detected on the folding pathway of cytochrome c in solution. Insertion into the lipid phase occurs via an unfolding step of I(C) through a more extended state associated with the membrane surface (I(S)). While I(C) appears to be as compact as salt-induced compact states in solution with substantial alpha-helix content, the final lipid-inserted state (Hmic) is as compact as the unfolded state in solution at pH 5 and has an alpha-helix content which resembles that of native cytochrome c.  (+info)

(3/1461) Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate.

On exposure to mildly acidic conditions, apomyoglobin forms a partially folded intermediate, I. The A, B, G, and H helices are significantly structured in this equilibrium intermediate, whereas the remainder of the protein is largely unfolded. We report here the effects of mutations at helix pairing sites on the stability of I in three classes of mutants that: (i) truncate hydrophobic side chains in native helix packing sites, (ii) truncate hydrophobic side chains not involved in interhelical contacts, and (iii) extend hydrophobic side chains at residues not involved in interhelical contacts. Class I mutants significantly decrease the stability and cooperativity of folding of the intermediate. Class II and III mutants show smaller effects on stability and have little effect on cooperativity. Qualitatively similar results to those found in I were obtained for all three classes of mutants in native myoglobin (N), demonstrating that hydrophobic burial is fairly specific to native helix packing sites in I as well as in N. These results suggest that hydrophobic burial along native-like interhelical contacts is important for the formation of the cooperatively folded intermediate.  (+info)

(4/1461) Energy-based de novo protein folding by conformational space annealing and an off-lattice united-residue force field: application to the 10-55 fragment of staphylococcal protein A and to apo calbindin D9K.

The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.  (+info)

(5/1461) Thermodynamic studies on anion binding to apotransferrin and to recombinant transferrin N-lobe half molecules.

Equilibrium constants for the binding of anions to apotransferrin, to the recombinant N-lobe half transferrin molecule (Tf/2N), and to a series of mutants of Tf/2N have been determined by difference UV titrations of samples in 0.1 M Hepes buffer at pH 7.4 and 25 degrees C. The anions included in this study are phosphate, sulfate, bicarbonate, pyrophosphate, methylenediphosphonic acid, and ethylenediphosphonic acid. There are no significant differences between anion binding to Tf/2N and anion binding to the N-lobe of apotransferrin. The binding of simple anions like phosphate appears to be essentially equivalent for the two apotransferrin binding sites. The binding of pyrophosphate and the diphosphonates is inequivalent, and the studies on the recombinant Tf/2N show that the stronger binding is associated with the N-terminal site. Anion binding constants for phosphate, pyrophosphate, and the diphosphonates with the N-lobe mutants K206A, K296A, and R124A have been determined. Anion binding tends to be weakest for the K296A mutant, but the variation in log K values among the three mutants is surprisingly small. It appears that the side chains of K206, K296, and R124 all make comparable contributions to anion binding. There are significant variations in the intensities of the peaks in the difference UV spectra that are generated by the titrations of the mutant apoproteins with these anions. These differences appear to be related more to variations in the molar extinction coefficients of the anion-protein complexes rather than to differences in binding constants.  (+info)

(6/1461) Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae.

The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.  (+info)

(7/1461) Quench-flow experiments combined with mass spectrometry show apomyoglobin folds through and obligatory intermediate.

Folding of apomyoglobin is characterized by formation of a compact intermediate that contains substantial helicity. To determine whether this intermediate is obligatory or whether the protein can fold directly into the native state via an alternate parallel pathway, we have combined quench-flow hydrogen-exchange pulse labeling techniques with electrospray ionization mass spectrometry. The mass spectra of apomyoglobin obtained at various refolding times suggest that apomyoglobin indeed folds through a single pathway containing an obligatory intermediate with a significant hydrogen-bonded secondary structure content.  (+info)

(8/1461) The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent.

We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state.  (+info)