Apolipoprotein A-I(Milano) unfolds via an intermediate state as studied by differential scanning calorimetry and circular dichroism. (49/2713)

In this study the thermal and denaturant induced denaturation behaviors of apolipoprotein A-I(Milano) (apo A-IM) have been studied by differential scanning calorimetry and circular dichroism spectroscopy, as well as solution properties by analytical ultracentrifugation. Thermal denaturation is dependent on pH, sodium phosphate concentration and NaCl concentration. The protein is highly self-associated at the protein concentrations used in this study. Denaturation of apo A-IM at pH 7.4 and 8.0 occurs in two steps. The midpoint between the transition is at 37 degrees C. The first step at 31 degrees C involves melting of tertiary structure and rearrangement of protein association complexes, i.e. a transition into an intermediate molten globular-like state. Subsequent melting of this intermediate state into an unfolded state occurs at 52 degrees C. At pH 2.8 the protein lacks all tertiary structure and denaturation occurs over a large temperature interval, indicating the induction of a molten globular-like state at low pH.  (+info)

A first British case of fish-eye disease presenting at age 75 years: a double heterozygote for defined and new mutations affecting LCAT structure and expression. (50/2713)

Fish-eye disease is a familial syndrome with corneal opacification, major high density lipoprotein (HDL) deficiency in plasma, significant cholesterol esterification in plasma on non-HDL lipoproteins, generally without premature coronary disease. This first British male case from unrelated British parents had infarcts when aged 49 and 73 years but was asymptomatic at age 81 years, with plasma cholesterol 4.3-7.1 mmol/litre, triglycerides 1.8-2.2 mmol/litre, HDL cholesterol < 0.1 mmol/litre, apolipoprotein A-I < 0.16 g/litre, lipoprotein(a) 0.61 g/litre. Cholesterol esterification was impaired using HDL-3 and A-I proteoliposomes but not using VLDL/IDL/LDL. The findings are those of LCAT deficiency with the classic fish-eye disease defect. Most of the 22 reported cases were homozygous or heterozygous for a Thr-Ile mutation at codon 123 of the lecithin:cholesterol acyltransferase (LCAT) gene. This patient was a double heterozygote for this mutation and a second new incompletely defined mutation affecting LCAT expression as defined by reduced mass and activity in plasma.  (+info)

Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis. (51/2713)

Receptors that endocytose high-density lipoproteins (HDL) have been elusive. Here yolk-sac endoderm-like cells were used to identify an endocytic receptor for HDL. The receptor was isolated by HDL affinity chromatography and identified as cubilin, the recently described endocytic receptor for intrinsic factor-vitamin B(12). Cubilin antibodies inhibit HDL endocytosis by the endoderm-like cells and in mouse embryo yolk-sac endoderm, a prominent site of cubilin expression. Cubilin-mediated HDL endocytosis is inhibitable by HDL(2), HDL(3), apolipoprotein (apo)A-I, apoA-II, apoE, and RAP, but not by low-density lipoprotein (LDL), oxidized LDL, VLDL, apoC-I, apoC-III, or heparin. These findings, coupled with the fact that cubilin is expressed in kidney proximal tubules, suggest a role for this receptor in embryonic acquisition of maternal HDL and renal catabolism of filterable forms of HDL.  (+info)

Human serum Paraoxonase/Arylesterase's retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids : apolipoprotein A-I stabilizes activity. (52/2713)

In serum, human paraoxonase/arylesterase (PON1) is found exclusively associated with high density lipoprotein (HDL) and contributes to its antiatherogenic properties by inhibiting low density lipoprotein (LDL) oxidation. Difficulties in purifying PON1 from apolipoprotein A-I (apoA-I) suggested that PON1's association with HDL may occur through a direct binding between these 2 proteins. An unusual property of PON1 is that the mature protein retains its hydrophobic N-terminal signal sequence. By expressing in vitro a mutant PON1 with a cleavable N-terminus, we demonstrate that PON1 associates with lipoproteins through its N-terminus by binding phospholipids directly rather than binding apoA-I. Nonetheless, apoA-I stabilized arylesterase activity more than did phospholipid alone, apoA-II, or apoE. Consequently, we studied the role of apoA-I in PON1 expression and HDL association in mice genetically deficient in apoA-I. Though present in HDL fractions at decreased levels, PON1 arylesterase activity was less stable than in control mice. Furthermore, PON1 could be competitively removed from HDL by phospholipids, suggesting that PON1's retained N-terminal peptide allows transfer of the enzyme between phospholipid surfaces. Thus, our data suggest that PON1 is stabilized by apoA-I, and its binding to HDL and physiological distribution are dependent on the direct binding of the retained hydrophobic N-terminus to phospholipids optimally presented in association with apoA-I.  (+info)

Apolipoprotein A-I gene expression is regulated by cellular zinc status in hep G2 cells. (53/2713)

The influence of Zn on the expression of the apolipoprotein A-I (apoA-I) gene in Hep G2 cells was examined. Zn depletion was achieved with a low-Zn (ZD) medium prepared from Zn-free growth medium (Opti), a ZD medium containing Chelex 100-extracted fetal bovine serum (CHE), and a medium containing chelator 1, 10-phenanthroline (OP). Compared with those for their respective controls, cellular Zn levels were reduced by 55, 48, and 46% and apoA-I mRNA abundances were reduced by 20, 29, and 28% in Opti, CHE, and OP systems, respectively, after one passage in ZD media or 24 h in OP medium. To establish the specificity of Zn treatment, groups of ZD cells were treated with their respective control media for the last 24 h (ZDA) or normal cells were cultured with OP medium supplemented with Zn (OP-Zn). ZDA treatments partially normalized cellular Zn levels in the Opti system and restored or elevated apoA-I mRNA levels in the Opti or CHE system, respectively. Similarly, the OP-Zn treatment restored the cellular Zn and apoA-I mRNA levels. Furthermore, one passage of culture with Zn-supplemented media in both the Opti and CHE systems resulted in higher cellular Zn and apoA-I mRNA levels than those for controls. Most significantly, short-term high-Zn induction to normal cells markedly elevated the cellular Zn (3-fold) and apoA-I mRNA (5-fold) levels. Data derived from this study strongly suggest that the expression of apoA-I is regulated by cellular Zn status.  (+info)

Impairment of endothelium-dependent arterial relaxation by high-fat feeding in ApoE-deficient mice: toward normalization by human ApoA-I expression. (54/2713)

BACKGROUND: Atherogenic lipoproteins can impair the endothelium-dependent arterial relaxation, and circumstantial evidence suggests a beneficial role of plasma high density lipoproteins and apolipoprotein (apo) A-I in counteracting the endothelium dysfunction. In the present study, vascular reactivity was determined in control, apoE-deficient mice (apoE-KO mice), and apoE-deficient mice expressing human apoA-I (apoE-KO/HuAITg mice). METHODS AND RESULTS: In the first part of the study, control and apoE-KO mice were fed a low-fat or a high-fat diet for 23 weeks, and the vasoactive responses of isolated thoracic aortic segments to norepinephrine, sodium nitroprusside, and acetylcholine (ACh) were determined. Whereas norepinephrine, sodium nitroprusside, and ACh evoked similar vascular responses in control and apoE-KO mice fed the low-fat diet, high-fat feeding in apoE-KO mice produced a significant 3-fold increase in the mean concentration required to produce a half-maximal relaxing effect (EC(50)) of ACh as compared with control mice. This reflects a weaker sensitivity to ACh of the aortic segments from the apoE-deficient animals. In the second part of the study, the mean EC(50) for ACh after high-fat feeding was found to be 4.4-fold lower in apoE-KO/HuAITg mice than in apoE-KO mice, indicating that the reduced sensitivity to ACh of the thoracic aorta from the apoE-KO mice fed the high-fat diet is improved by the expression of human apoA-I. CONCLUSIONS: The present study demonstrates that the endothelium-dependent arterial relaxation is impaired in apoE-KO mice fed the high-fat diet. The endothelium dysfunction tends to be normalized by human apoA-I expression.  (+info)

Oxysterol efflux from macrophage foam cells: the essential role of acceptor phospholipid. (55/2713)

Oxidized forms of cholesterol (oxysterols) are present in atherosclerotic lesions and may play an active role in lesion development. For example, 7-ketocholesterol (7KC) inhibits cholesterol efflux from macrophage foam cells induced by apolipoprotein A-I (apoA-I). Such oxysterols may promote foam cell formation in atherosclerotic lesions by preventing effective clearance of excess cholesterol. ApoA-I also induces phospholipid (PL) export from foam cells and it has been suggested that cholesterol efflux is dependent upon PL association with the apolipoprotein. In the current study, the effect of oxysterol enrichment of foam cells on phospholipid efflux was measured. Export of cellular PL to apoA-I from 7KC-enriched foam cells was inhibited to the same extent as cholesterol, indicating that the reduced cholesterol export may be a consequence of a decline in the capacity of the foam cells to generate PL/apoA-I particles capable of accepting cellular cholesterol. Incubation of foam cells with pre-formed PL/apoA-I discs increased cholesterol export from 7KC-enriched cells to levels seen in 7KC-free cells. Foam cells produced by uptake of oxidized LDL, which contain similar amounts of 7KC plus other oxidation products, expressed a more profound inhibition of PL export to apoA-I. Cholesterol efflux from these cells improved only partially by provision of PL-containing acceptors. Efflux of 7KC from both foam cell types occurred to PL/apoA-I discs but was only minimal to lipid-free apoA-I, indicating that export of this oxysterol is more dependent than cholesterol upon the presence of extracellular phospholipid.  (+info)

Human apolipoprotein A-I kinetics within triglyceride-rich lipoproteins and high density lipoproteins. (56/2713)

Stable isotope methodology was used to determine the kinetic behavior of apolipoprotein (apo) A-I within the triglyceride-rich lipoprotein (TRL) fraction and to compare TRL apoA-I kinetics with that of apoA-I in high density lipoprotein (HDL) and TRL apoB-48. Eight subjects (5 males and 3 females) over the age of 40 were placed on a baseline average American diet and after 6 weeks received a primed-constant infusion of [5,5,5-(2)H(3)]-l-leucine for 15 h while consuming small hourly meals of identical composition. HDL and TRL apoA-I and TRL apoB-48 tracer/tracee enrichment curves were obtained by gas chromatography;-mass spectrometry. Data were fitted to a compartmental model to determine the fractional secretion rates of apoA-I and apoB-48 within each lipoprotein fraction. Mean plasma apoA-I levels in TRL and HDL fractions were 0. 204 +/- 0.057 and 134 +/- 15 mg/dl, respectively. The mean fractional catabolic rate (FCR) of TRL apoA-I was 0.250 +/- 0.069 and HDL apoA-I was 0.239 +/- 0.054 pools/day, with mean estimated residence times (RT) of 4.27 and 4.37 days, respectively. The mean TRL apoB-48 FCR was 5.2 +/- 2.0 pools/day and the estimated mean RT was 5.1 +/- 1.8 h. Our results indicate that apoA-I is catabolized at a slower rate than apoB-48 within TRL, and that apoA-I within TRL and HDL fractions are catabolized at similar rates.  (+info)