UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. (9/112)

The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.  (+info)

The sucrose transporter of celery. Identification and expression during salt stress. (10/112)

In celery (Apium graveolens L.), long-distance transport of reduced carbon occurs both in the form of sucrose (Suc) and mannitol. The presence of mannitol has been related to the resistance of celery to salt stress. To investigate the transport events occurring during salt stress, we have cloned the H(+)/Suc transporter of celery AgSUT1 (A. graveolens Suc uptake transport 1) from a mature leaf cDNA library. The function of the encoded protein was confirmed by expression in yeast. AgSUT1 is a H(+)/Suc transporter with a high affinity for Suc (K(m) of 139 microM). Another closely related cDNA (AgSUT2) was also identified. AgSUT1 is mainly expressed in mature leaves and phloem of petioles, but also in sink organs such as roots. When celery plants were subjected to salt stress conditions (30 d watering with 300 mM NaCl) favoring mannitol accumulation (J.D. Everard, R. Gucci, S.C. Kann, J.A. Flore, W.H. Loescher [1994] Plant Physiol 106: 281-292), AgSUT1 expression was decreased in all organs, but markedly in roots. The results are discussed in relation to the physiology of celery.  (+info)

Chromatographic separation of a small subunit (PsbW/PsaY) and its assignment to Photosystem I reaction center. (11/112)

By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well.  (+info)

Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. (12/112)

Transient influx of Ca(2+) constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae-derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca(2+)](cyt)), which peaked at approximately 1 microM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca(2+)](cyt) signature was achieved by elicitor concentrations sufficient to stimulate Ca(2+) influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca(2+)](cyt) but not the rapidly induced [Ca(2+)](cyt) transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca(2+) influx across the plasma membrane or of Ca(2+) release from internal stores suggests that the elicitor-induced sustained increase of [Ca(2+)](cyt) predominantly results from the influx of extracellular Ca(2+). Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca(2+)](cyt), and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca(2+)](cyt) is causally involved in signaling the activation of pathogen defense in parsley.  (+info)

Modulation of human glutathione S-transferases by botanically defined vegetable diets. (13/112)

Glutathione S-transferases (GSTs) conjugate activated xenobiotics with glutathione; thus, GST induction may improve detoxification and excretion of potentially harmful compounds. Using a randomized cross-over design, we tested the hypothesis that, in humans, serum GST-alpha concentration (GST-alpha) and GST activity increase with vegetable consumption and that this effect is GSTM1 genotype dependent. Twenty-one men (10 GSTM1-null and 11 GSTM1+) and 22 women (15 GSTM1-null and 7 GSTM1+), nonsmokers, 20-40 years of age and not on medications, ate four 6-day controlled diets: basal (vegetable-free), and basal supplemented with three botanically defined groups of vegetables (i.e., brassica, allium, and apiaceous). Fasting blood samples, collected on the last 2 days of each feeding period, were analyzed for GST-alpha, serum GST activity [against 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl)] and peripheral-lymphocyte GST-mu activity (against trans-stilbene oxide). The brassica, but not allium or apiaceous, vegetable diets (relative to the basal diet) increased GST-alpha by 26% (P = 0.005) and GST (NBD-Cl) activity by 7% (P = 0.02) in the GSTM1-null individuals, particularly the women. Apiaceous vegetable supplementation decreased GST-alpha in the GSTM1+ men (P = 0.03). Among the GSTM1+ women, both brassica and the allium diets increased GST-mu activity by 18% (P = 0.02) and 26% (P = 0.001), respectively. The vegetable diets had no effect on GST (CDNB) activity, irrespective of GSTM1 genotype or sex. These results demonstrate that GSTM1 genotype has a significant effect on GST responses to diet and that brassica vegetables are most effective at inducing GST-alpha, whereas both brassica and allium vegetables induce GST-mu. GST responses were more pronounced in women than men, but it is not clear from this study whether this is a dose-per-body-weight or a sex-specific effect.  (+info)

NADPH supply and mannitol biosynthesis. Characterization, cloning, and regulation of the non-reversible glyceraldehyde-3-phosphate dehydrogenase in celery leaves. (14/112)

Mannitol, a sugar alcohol, is a major primary photosynthetic product in celery (Apium graveolens L. cv Giant Pascal). We report here on purification, characterization, and cDNA cloning of cytosolic non-reversible glyceraldehyde-3-P dehydrogenase (nr-G3PDH, EC 1.2.1. 9), the apparent key contributor of the NADPH required for mannitol biosynthesis in celery leaves. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, purified nr-G3PDH showed a molecular mass of 53 kD. A 1,734-bp full-length cDNA clone (accession no. AF196292) encoding nr-G3PDH was identified using polymerase chain reaction and rapid amplification of cDNA ends techniques. The cDNA clone has an open reading frame of 1,491 bp encoding 496 amino acid residues with a calculated molecular weight of 53,172. K(m) values for the celery nr-G3PDH were low (6.8 microM for NADP(+) and 29 microM for D-glyceraldehyde-3-P). NADPH, 3-phosphoglycerate, and ATP were competitive inhibitors, and cytosolic levels of these three metabolites (as determined by nonaqueous fractionation) were all above the concentrations necessary to inhibit activity in vitro, suggesting that nr-G3PDH may be regulated through feedback inhibition by one or more metabolites. We also determined a tight association between activities of nr-G3PDH and mannose-6-P reductase and mRNA expression levels in response to both leaf development and salt treatment. Collectively, our data clearly show metabolic, developmental, and environmental regulation of nr-G3PDH, and also suggest that the supply of NADPH necessary for mannitol biosynthesis is under tight metabolic control.  (+info)

Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. (15/112)

UV irradiation stimulates expression of the gene encoding the key enzyme chalcone synthase (CHS), which leads to the generation of protective flavonoids in parsley cell cultures. CHS transcripts increase after 3 to 4 hr, and early genes are involved in the signal transduction to the CHS promoter. By using the fluorescent differential display technique in a large-scale screening, several early UV light-induced genes were isolated. Of these, a novel glutathione S-transferase (PcGST1) is induced within 2 hr and precedes CHS expression. Overexpression of PcGST1 in transformed cell lines containing a CHS promoter/luciferase reporter (CHS-LUC) affected the onset of LUC transcription. Supplementing these cell lines with glutathione immediately stimulated CHS-LUC expression within 2 hr in dark-incubated cells and resulted in a biphasic induction profile in UV-irradiated cells. Our data indicate the involvement of glutathione and PcGST1 in early events of a UV light-dependent signal transduction pathway to CHS. In this context, the oxidative status of a cell acts as a central regulating element.  (+info)

The DNA binding properties of the parsley bZIP transcription factor CPRF4a are regulated by light. (16/112)

The common plant regulatory factors (CPRFs) from parsley are transcription factors with a basic leucine zipper motif that bind to cis-regulatory elements frequently found in promoters of light-regulated genes. Recent studies have revealed that certain CPRF proteins are regulated in response to light by changes in their expression level and in their intracellular localization. Here, we describe an additional mechanism contributing to the light-dependent regulation of CPRF proteins. We show that the DNA binding activity of the factor CPRF4a is modulated in a phosphorylation-dependent manner and that cytosolic components are involved in the regulation of this process. Moreover, we have identified a cytosolic kinase responsible for CPRF4a phosphorylation. Modification of recombinant CPRF4a by this kinase, however, is insufficient to cause a full activation of the factor, suggesting that additional modifications are required. Furthermore, we demonstrate that the DNA binding activity of the factor is modified upon light treatment. The results of additional irradiation experiments suggest that this photoresponse is controlled by different photoreceptor systems. We discuss the possible role of CPRF4a in light signal transduction as well as the emerging regulatory network controlling CPRF activities in parsley.  (+info)