Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. (9/795)

A bacteriophage infecting the secondary endosymbiont of the pea aphid Acyrthosiphon pisum was isolated and characterized. The phage was tentatively named bacteriophage APSE-1, for bacteriophage 1 of the A. pisum secondary endosymbiont. The APSE-1 phage particles morphologically resembled those of species of the Podoviridae. The complete nucleotide sequence of the bacteriophage APSE-1 genome was elucidated, and its genomic organization was deduced. The genome consists of a circularly permuted and terminally redundant double-stranded DNA molecule of 36524 bp. Fifty-four open reading frames, putatively encoding proteins with molecular masses of more than 8 kDa, were distinguished. ORF24 was identified as the gene coding for the major head protein by N-terminal amino acid sequencing of the protein. Comparison of APSE-1 sequences with bacteriophage-derived sequences present in databases revealed the putative function of 24 products, including the lysis proteins, scaffolding protein, transfer proteins, and DNA polymerase. This is the first report of a phage infecting an endosymbiont of an arthropod.  (+info)

Faba bean necrotic yellows virus (genus Nanovirus) requires a helper factor for its aphid transmission. (10/795)

Purified faba bean necrotic yellows virus (FBNYV; genus Nanovirus) alone is not transmissible by its aphid vector, Acyrthosiphon pisum, regardless of whether it is acquired from artificial diets or directly microinjected into the aphid's hemocoel. The purified virus contains all of the genetic information required for its infection cycle as it readily replicated in cowpea protoplasts and systemically infected Vicia faba seedlings that were biolistically inoculated using gold particles coated with intact virions or viral DNA. The bombarded plants not only developed the typical disease syndrome, thus indicating that FBNYV is the sole causal agent of the disease, but also served as a source from which the virus was readily acquired and transmitted by A. pisum. The defect of the purified virus in aphid transmissibility suggests that FBNYV requires a helper factor (HF) for its vector transmission that is either nonfunctional or absent in purified virus suspensions. The requirement for an HF was confirmed in complementation experiments using two distinct isolates of the virus. These experiments revealed that aphids transmitted the purified virus isolate from artificial diets only when they had fed previously on plants infected with the other FBNYV isolate. Also, microinjected FBNYV, which persisted to the same extent in A. pisum as naturally acquired virus, was transmissible when aphids had acquired the HF from infected plants. This suggests that one of the functions of the HF in the transmission process is to facilitate virus transport across the hemocoel-salivary gland interface.  (+info)

Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. (11/795)

Previous work with tobacco vein mottling virus (TVMV) has established that a highly conserved three amino acid motif, asp-ala-gly (DAG), located near the N terminus of the coat protein (CP), is important for aphid transmission. However, several other potyviruses which have motifs other than DAG are aphid-transmissible. Creation of these motifs in TVMV through site-directed mutagenesis failed to render TVMV aphid-transmissible from infected plants, and the creation of a putative complementary motif in the helper component did not restore transmissibility. In an isolate of tobacco etch virus (TEV) that contains two consecutive DAG motifs separated by a single ala, transmissibility was abolished or reduced by mutations affecting the first motif, whereas mutations in the second motif had little or no effect. In a TEV mutant made non-transmissible due to an altered first motif, substitution of val for ala in the position immediately before the second DAG restored transmissibility, whereas changing val to ala in the location prior to the first DAG resulted in reduced TEV transmissibility. In contrast, a val to ala change in the position preceding the single DAG motif of TVMV did not affect transmission. Creation of another DAG motif at the beginning of the TVMV CP core, in a position where certain other potyviruses have a second DAG motif, did not restore transmissibility. Our results suggest that the mere presence of a DAG motif does not guarantee transmissibility and that the context in which the DAG or equivalent motif is found plays a role in the process.  (+info)

Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. (12/795)

The open reading frame (ORF) III product (PIII) of cauliflower mosaic virus is necessary for the infection cycle but its role is poorly understood. We have used in vitro protein binding ('far Western') assays to demonstrate that PIII interacts with the cauliflower mosaic virus (CaMV) ORF II product (PII), a known aphid transmission factor. Aphid transmission of purified virions of the PII-defective strain CM4-184 was dependent upon added PII, but complementation was efficient only in the presence of PIII, demonstrating the requirement of PIII for transmission. Deletion mutagenesis mapped the interaction domains of PIII and PII to the 30 N-terminal and 61 C-terminal residues of PIII and PII, respectively. A model for interaction between PIII and PII is proposed on the basis of secondary structure predictions. Finally, a direct correlation between the ability of PIII and PII to interact and aphid transmissibility of the virus was demonstrated by using mutagenized PIII proteins. Taken together, these data argue strongly that PIII is a second 'helper' factor required for CaMV transmission by aphids.  (+info)

Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. (13/795)

Point mutations were introduced into or near five conserved sequence motifs of the readthrough domain of the beet western yellows virus minor capsid protein P74. The mutant virus was tested for its ability to accumulate efficiently in agroinfected plants and to be transmitted by its aphid vector, Myzus persicae. The stability of the mutants in the agroinfected and aphid-infected plants was followed by sequence analysis of the progeny virus. Only the mutation Y201D was found to strongly inhibit virus accumulation in planta following agroinfection, but high accumulation levels were restored by reversion or pseudoreversion at this site. Four of the five mutants were poorly aphid transmissible, but in three cases successful transmission was restored by pseudoreversion or second-site mutations. The same second-site mutations in the nonconserved motif PVT(32-34) were shown to compensate for two distinct primary mutations (R24A and E59A/D60A), one on each side of the PVT sequence. In the latter case, a second-site mutation in the PVT motif restored the ability of the virus to move from the hemocoel through the accessory salivary gland following microinjection of mutant virus into the aphid hemocoel but did not permit virus movement across the epithelium separating the intestine from the hemocoel. Successful movement of the mutant virus across both barriers was accompanied by conversion of A59 to E or T, indicating that distinct features of the readthrough domain in this region operate at different stages of the transmission process.  (+info)

Transgene translatability increases effectiveness of replicase-mediated resistance to cucumber mosaic virus. (14/795)

Transgenic tobacco plants expressing an altered form of the 2a replicase gene from the Fny strain of Cucumber mosaic virus (CMV) exhibit suppressed virus replication and restricted virus movement when inoculated mechanically or by aphid vectors. Additional transformants have been generated which contain replicase gene constructs designed to determine the role(s) of transgene mRNA and/or protein in resistance. Resistance to systemic disease caused by CMV, as well as delayed infection, was observed in several lines of transgenic plants which were capable of expressing either full-length or truncated replicase proteins. In contrast, among plants which contained nontranslatable transgene constructs, only one of 61 lines examined exhibited delays or resistance. Once infected, plants never recovered, regardless of transgene translatability. Transgenic plants exhibiting a range of resistance levels were examined for transgene copy number, mRNA and protein levels. Although ribonuclease protection assays demonstrated that transgene mRNA levels were very low, resistant lines had consistently more steady-state transgene mRNA than susceptible lines. Furthermore, chlorotic or necrotic local lesions developed on the inoculated leaves of transgenic lines containing translatable transgenes, but not on inoculated leaves of lines containing nontranslatable transgenes. These results demonstrate that translatability of the transgene and possibly expression of the transgene protein itself facilitates replicase-mediated resistance to CMV in tobacco.  (+info)

Tagging potato leafroll virus with the jellyfish green fluorescent protein gene. (15/795)

A full-length cDNA corresponding to the RNA genome of Potato leafroll virus (PLRV) was modified by inserting cDNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene near its 3' end. Nicotiana benthamiana protoplasts electroporated with plasmid DNA containing this cDNA behind the 35S RNA promoter of Cauliflower mosaic virus became infected with the recombinant virus (PLRV-GFP). Up to 5% of transfected protoplasts showed GFP-specific fluorescence. Progeny virus particles were morphologically indistinguishable from those of wild-type PLRV but, unlike PLRV particles, they bound to grids coated with antibodies to GFP. Aphids fed on extracts of these protoplasts transmitted PLRV-GFP to test plants, as shown by specific fluorescence in some vascular tissue and epidermal cells and subsequent systemic infection. In plants agroinfected with PLRV-GFP cDNA in pBIN19, some cells became fluorescent and systemic infections developed. However, after either type of inoculation, fluorescence was mostly restricted to single cells and the only PLRV genome detected in systemically infected tissues lacked some or all of the inserted GFP cDNA, apparently because of naturally occurring deletions. Thus, intact PLRV-GFP was unable to move from cell to cell. Nevertheless, PLRV-GFP has novel potential for exploring the initial stages of PLRV infection.  (+info)

Chemical defense against predation in an insect egg. (16/795)

The larva of the green lacewing (Ceraeochrysa cubana) (Neuroptera, Chrysopidae) is a natural predator of eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae), a moth that sequesters pyrrolizidine alkaloids from its larval foodplant (Fabaceae, Crotalaria spp.). Utetheisa eggs are ordinarily endowed with the alkaloid. Alkaloid-free Utetheisa eggs, produced experimentally, are pierced by the larva with its sharp tubular jaws and sucked out. Alkaloid-laden eggs, in contrast, are rejected. When attacking an Utetheisa egg cluster (numbering on average 20 eggs), the larva subjects it to an inspection process. It prods and/or pierces a small number of eggs (on average two to three) and, if these contain alkaloid, it passes "negative judgement" on the remainder of the cluster and turns away. Such generalization on the part of the larva makes sense, because the eggs within clusters differ little in alkaloid content. There is, however, considerable between-cluster variation in egg alkaloid content, so clusters in nature can be expected to range widely in palatability. To check each cluster for acceptability must therefore be adaptive for the larva, just as it must be adaptive for Utetheisa to lay its eggs in large clusters and to apportion alkaloid evenly among eggs of a cluster.  (+info)