50 million years of genomic stasis in endosymbiotic bacteria. (65/795)

Comparison of two fully sequenced genomes of Buchnera aphidicola, the obligate endosymbionts of aphids, reveals the most extreme genome stability to date: no chromosome rearrangements or gene acquisitions have occurred in the past 50 to 70 million years, despite substantial sequence evolution and the inactivation and loss of individual genes. In contrast, the genomes of their closest free-living relatives, Escherichia coli and Salmonella spp., are more than 2000-fold more labile in content and gene order. The genomic stasis of B. aphidicola, likely attributable to the loss of phages, repeated sequences, and recA, indicates that B. aphidicola is no longer a source of ecological innovation for its hosts.  (+info)

Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. (66/795)

To define plant 'nutritional quality' for aphids, the causal basis of the variation in aphid performance between host plants of different developmental ages was explored using the aphids Myzus persicae and Macrosiphum euphorbiae on potato plants (Solanum tuberosum). Both aphid species performed better on developmentally young ('pre-tuber-filling') plants than on mature ('tuber-filling') plants. Aphid performance did not vary with leaf phloem sucrose:amino acid ratio but could be related to changes in the amino acid composition of the phloem, which included a developmental shift from high glutamine levels in pre-tuber-filling plants to low glutamine levels in tuber-filling plants. Aphid performance on chemically defined 'young' and 'old' diets, with amino acid composition corresponding to that of phloem amino acid composition in pre-tuber-filling and tuber-filling plants, respectively, confirmed that phloem amino acid composition contributed to low aphid performance on tuber-filling plants. The relatively poor performance on 'old' diets could be accounted for, at least in part, by depressed feeding rates. These data suggest that amino acid composition of the phloem is one factor shaping the nutritional quality of plants for aphids.  (+info)

A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. (67/795)

A prominent feature on the surfaces of virions of Cucumber mosaic virus (CMV) is a negatively charged loop structure (the beta H-beta I loop). Six of 8 amino acids in this capsid protein loop are highly conserved among strains of CMV and other cucumoviruses. Five of these amino acids were individually changed to alanine or lysine (an amino acid of opposite charge) to create nine mutants (the D191A, D191K, D192A, D192K, L194A, E195A, E195K, D197A, and D197K mutants). Transcripts of cDNA clones were infectious when they were mechanically inoculated onto tobacco, giving rise to symptoms of a mottle-mosaic typical of the wild-type virus (the D191A, D191K, D192A, E195A, E195K, and D197A mutants), a systemic necrosis (the D192K mutant), or an atypical chlorosis with necrotic flecking (the L194A mutant). The mutants formed virions and accumulated to wild-type levels, but eight of the nine mutants were defective in aphid vector transmission. The aspartate-to-lysine mutation at position 197 interfered with infection; the only recovered progeny (the D197K(*) mutant) harbored a second-site mutation (denoted by the asterisk) of alanine to glutamate at position 193, a proximal site in the beta H-beta I loop. Since the disruption of charged amino acid residues in the beta H-beta I loop reduces or eliminates vector transmissibility without grossly affecting infectivity or virion formation, we hypothesize that this sequence or structure has been conserved to facilitate aphid vector transmission.  (+info)

L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. (68/795)

L-Ascorbic acid (AsA) was found to be loaded into phloem of source leaves and transported to sink tissues. When L-[(14)C]AsA was applied to leaves of intact plants of three different species, autoradiographs and HPLC analysis demonstrated that AsA was accumulated into phloem and transported to root tips, shoots, and floral organs, but not to mature leaves. AsA was also directly detected in Arabidopsis sieve tube sap collected from an English green aphid (Sitobion avenae) stylet. Feeding a single leaf of intact Arabidopsis or Medicago sativa with 10 or 20 mM L-galactono-1,4-lactone (GAL-L), the immediate precursor of AsA, lead to a 7- to 8-fold increase in AsA in the treated leaf and a 2- to 3-fold increase of AsA in untreated sink tissues of the same plant. The amount of AsA produced in treated leaves and accumulated in sink tissues was proportional to the amount of GAL-L applied. Studies of the ability of organs to produce AsA from GAL-L showed mature leaves have a 3- to 10-fold higher biosynthetic capacity and much lower AsA turnover rate than sink tissues. The results indicate AsA transporters reside in the phloem, and that AsA translocation is likely required to meet AsA demands of rapidly growing non-photosynthetic tissues. This study also demonstrates that source leaf AsA biosynthesis is limited by substrate availability rather than biosynthetic capacity, and sink AsA levels may be limited to some extent by source production. Phloem translocation of AsA may be one factor regulating sink development because AsA is critical to cell division/growth.  (+info)

A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). (69/795)

Discrete variation in wing morphology is a very common phenomenon in insects and has been used extensively in the past 50 years as a model to study the ecology and evolution of dispersal. Wing morph determination can be purely genetic, purely environmental, or some combination of the two. The precise genetic determinants of genetically based wing morph variation are unknown. Here we explore the genetic basis of wing polymorphism in the pea aphid, which can produce either winged or wingless males. We confirm that three types of pea aphid clones coexist in natural populations, those producing winged males only, those producing wingless males only, and those producing a mixture of both. A Mendelian genetic analysis reveals that male wing polymorphism in pea aphids is determined by a single locus, two alleles system. Using microsatellite loci of known location, we show that this locus is on the X chromosome. The existence of a simple genetic determinism for wing polymorphism in a system in which genetic investigation is possible may help investigations on the physiological and molecular mechanisms of genetically-based wing morph variation. This locus could also be used in the search for genes involved in the wing polyphenism described in parthenogenetic females and to investigate the interplay between polymorphisms and polyphenisms.  (+info)

An antibody to the putative aphid recognition site on cucumber mosaic virus recognizes pentons but not hexons. (70/795)

Cucumber mosaic virus (CMV), the type member of the genus Cucumovirus (family Bromoviridae), is transmitted by aphids in a nonpersistent manner. Mutagenesis experiments identified the betaH-betaI loop of the capsid subunit as a potential key motif responsible for interactions with the insect vector. To further examine the functional characteristics of this motif, we generated monoclonal antibodies that bound to native virions but not to betaH-betaI mutants. Fab fragments from these antibodies were complexed with wild-type CMV and the virus-Fab structure was determined to 12-A resolution by using electron cryomicroscopy and image reconstruction techniques. The electron density attributed to the bound antibody has a turret-like appearance and protrudes from each of the 12 fivefold axes of the icosahedral virus. Thus, the antibody binds only to the pentameric clusters (pentons) of A subunits of the T=3 quasisymmetric virus and does not appear to bind to any of the B and C subunits that occur as hexameric clusters (hexons) at the threefold (quasi-sixfold) axes. Modeling and electron density comparisons were used to analyze the paratope-epitope interface and demonstrated that the antibody binds to three betaH-betaI loops in three adjacent A subunits in each penton. This antibody can discriminate between A and B/C subunits even though the betaH-betaI loop adopts the same structure in all 180 capsid subunits and is therefore recognizing differences in subunit arrangements. Antibodies with such character have potential use as probes of viral assembly. Our results may provide an additional rationale for designing synthetic vaccines by using symmetrical viral particles.  (+info)

Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. (71/795)

In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.  (+info)

Sequence analysis and genomic organization of Aphid lethal paralysis virus: a new member of the family Dicistroviridae. (72/795)

The complete nucleotide sequence of the genomic RNA of an aphid-infecting virus, Aphid lethal paralysis virus (ALPV), has been determined. The genome is 9812 nt in length and contains two long open reading frames (ORFs), which are separated by an intergenic region of 163 nt. The first ORF (5' ORF) is preceded by an untranslated leader sequence of 506 nt, while an untranslated region of 571 nt follows the second ORF (3' ORF). The deduced amino acid sequences of the 5' ORF and 3' ORF products respectively showed similarity to the non-structural and structural proteins of members of the newly recognized genus Cripavirus (family Dicistroviridae). On the basis of the observed sequence similarities and identical genome organization, it is proposed that ALPV belongs to this genus. Phylogenetic analysis showed that ALPV is most closely related to Rhopalosiphum padi virus, and groups in a cluster with Drosophila C virus and Cricket paralysis virus, while the other members of this genus are more distantly related. Infectivity experiments showed that ALPV can not only infect aphid species but is also able to infect the whitefly Trialeurodes vaporariorum, extending its host range to another family of the order Hemiptera.  (+info)