Sequence requirements for translation initiation of Rhopalosiphum padi virus ORF2. (17/795)

Rhopalosiphum padi virus (RhPV) is an aphid-infecting virus with a 10-kb ssRNA genome that contains two large open reading frames (ORFs). ORF1 and ORF2 encode the nonstructural and structural polyproteins, respectively. Both ORFs are preceded by noncoding regions of 500 nt that could function as internal ribosome entry segments (IRESes). The sequence for ORF2 lacks an obvious initiation codon, but an out-of-frame AUG codon is present that could translate ORF2 through a +1 frameshift. To investigate the mechanisms of translation initiation of ORF2, a series of point and deletion mutations were constructed and transcribed and translated in vitro. A bicistronic plasmid containing two copies of the RhPV intergenic region translated both ORFs efficiently, indicating that the region functioned as an IRES in vitro. Deletion analysis showed that the region required for activity of the IRES extended from 178 nt upstream and 6 nt downstream of the 5' border of ORF2. Changes in the out-of-frame AUG codon had little effect on translation initiation, but mutations that included the first and second codons of ORF2 or that disrupted a putative pseudoknot structure near the 3' end of the IRES failed to initiate protein synthesis. Sequence analysis of the in vitro synthesized proteins showed that the first amino acid of the polyprotein corresponded to the second codon of ORF2. These results show that in vitro the noncoding region upstream of RhPV ORF2 functions as an IRES that contains a pseudoknot that directs translation initiation at a non-AUG codon. If the in vitro synthesized proteins have not been processed by an aminopeptidase, translation is initiated at the second (GCA) codon of ORF2.  (+info)

Identifying the determinants in the equatorial domain of Buchnera GroEL implicated in binding Potato leafroll virus. (18/795)

Luteoviruses avoid degradation in the hemolymph of their aphid vector by interacting with a GroEL homolog from the aphid's primary endosymbiotic bacterium (Buchnera sp.). Mutational analysis of GroEL from the primary endosymbiont of Myzus persicae (MpB GroEL) revealed that the amino acids mediating binding of Potato leafroll virus (PLRV; Luteoviridae) are located within residues 9 to 19 and 427 to 457 of the N-terminal and C-terminal regions, respectively, of the discontinuous equatorial domain. Virus overlay assays with a series of overlapping synthetic decameric peptides and their derivatives demonstrated that R13, K15, L17, and R18 of the N-terminal region and R441 and R445 of the C-terminal region of the equatorial domain of GroEL are critical for PLRV binding. Replacement of R441 and R445 by alanine in full-length MpB GroEL and in MpB GroEL deletion mutants reduced but did not abolish PLRV binding. Alanine substitution of either R13 or K15 eliminated the PLRV-binding capacity of the other and those of L17 and R18. In the predicted tertiary structure of GroEL, the determinants mediating virus binding are juxtaposed in the equatorial plain.  (+info)

Prephenate dehydratase from the aphid endosymbiont (Buchnera) displays changes in the regulatory domain that suggest its desensitization to inhibition by phenylalanine. (19/795)

Buchnera aphidicola, the prokaryotic endosymbiont of aphids, complements dietary deficiencies with the synthesis and provision of several essential amino acids. We have cloned and sequenced a region of the genome of B. aphidicola isolated from Acyrthosiphon pisum which includes the two-domain aroQ/pheA gene. This gene encodes the bifunctional chorismate mutase-prephenate dehydratase protein, which plays a central role in L-phenylalanine biosynthesis. Two changes involved in the overproduction of this amino acid have been detected. First, the absence of an attenuator region suggests a constitutive expression of this gene. Second, the regulatory domain of the Buchnera prephenate dehydratase shows changes in the ESRP sequence, which is involved in the allosteric binding of phenylalanine and is strongly conserved in prephenate dehydratase proteins from practically all known organisms. These changes suggest the desensitization of the enzyme to inhibition by phenylalanine and would permit the bacterial endosymbiont to overproduce phenylalanine.  (+info)

Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets. (20/795)

A variety of fluorescent tracers and proteins were injected via severed aphid stylets into the sieve tubes of wheat (Triticum aestivum L.) grains to evaluate the dimensions of plasmodesmal channels involved in sieve element/companion cell (SE/CC) unloading and post-phloem transport. In the post-phloem pathway, where diffusion is the predominant mode of transport, the largest molecule to show mobility was 16-kD dextran, with a Stokes radius of 2.6 nm. This suggests that the aqueous channels for cell-to-cell transport must be about 8 nm in diameter. Even the largest tracer injected into the sieve tubes, 400-kD fluorescein-labeled Ficoll with a Stokes radius of about 11 nm, was unloaded from the SE/CC complex. However, in contrast to smaller tracers (< or =3 kD, with a Stokes radius < or = 1.2 nm), the unloading of fluorescein-labeled Ficoll and other large molecules from the SE/CC complex showed an irregular, patchy distribution, with no further movement along the post-phloem pathway. Either the plasmodesmal channels involved in SE/CC unloading are exceptionally large (perhaps as much as 42 nm in diameter), with only a very small fraction of plasmodesmata being conductive, or the larger tracers damage the plasmodesmata in some way, enlarging smaller channels.  (+info)

Decoupling of genome size and sequence divergence in a symbiotic bacterium. (21/795)

In contrast to genome size variation in most bacterial taxa, the small genome size of Buchnera sp. was shown to be highly conserved across genetically diverse isolates (630 to 643 kb). This exceptional size conservation may reflect the inability of this obligate mutualist to acquire foreign DNA and reduced selection for genetic novelty within a static intracellular environment.  (+info)

Accommodating phylogenetic uncertainty in evolutionary studies. (22/795)

Many evolutionary studies use comparisons across species to detect evidence of natural selection and to examine the rate of character evolution. Statistical analyses in these studies are usually performed by means of a species phylogeny to accommodate the effects of shared evolutionary history. The phylogeny is usually treated as known without error; this assumption is problematic because inferred phylogenies are subject to both stochastic and systematic errors. We describe methods for accommodating phylogenetic uncertainty in evolutionary studies by means of Bayesian inference. The methods are computationally intensive but general enough to be applied in most comparative evolutionary studies.  (+info)

The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: homoptera). (23/795)

The secondary intracellular symbiotic bacterium (S-symbiont) of the pea aphid Acyrthosiphon pisum was investigated to determine its prevalence among strains, its phylogenetic position, its localization in the host insect, its ultrastructure, and the cytology of the endosymbiotic system. A total of 14 aphid strains were examined, and the S-symbiont was detected in 4 Japanese strains by diagnostic PCR. Two types of eubacterial 16S ribosomal DNA sequences were identified in disymbiotic strains; one of these types was obtained from the primary symbiont Buchnera sp., and the other was obtained from the S-symbiont. In situ hybridization and electron microscopy revealed that the S-symbiont was localized not only in the sheath cells but also in a novel type of cells, the secondary mycetocytes (S-mycetocytes), which have not been found previously in A. pisum. The size and shape of the S-symbiont cells were different when we compared the symbionts in the sheath cells and the symbionts in the S-mycetocytes, indicating that the S-symbiont is pleomorphic under different endosymbiotic conditions. Light microscopy, electron microscopy, and diagnostic PCR revealed unequivocally that the hemocoel is also a normal location for the S-symbiont. Occasional disordered localization of S-symbionts was also observed in adult aphids, suggesting that there has been imperfect host-symbiont coadaptation over the short history of coevolution of these organisms.  (+info)

New roles for cis-jasmone as an insect semiochemical and in plant defense. (24/795)

cis-jasmone, or (Z)-jasmone, is well known as a component of plant volatiles, and its release can be induced by damage, for example during insect herbivory. Using the olfactory system of the lettuce aphid to investigate volatiles from plants avoided by this insect, (Z)-jasmone was found to be electrophysiologically active and also to be repellent in laboratory choice tests. In field studies, repellency from traps was demonstrated for the damson-hop aphid, and with cereal aphids numbers were reduced in plots of winter wheat treated with (Z)-jasmone. In contrast, attractant activity was found in laboratory and wind tunnel tests for insects acting antagonistically to aphids, namely the seven-spot ladybird and an aphid parasitoid. When applied in the vapor phase to intact bean plants, (Z)-jasmone induced the production of volatile compounds, including the monoterpene (E)-beta-ocimene, which affect plant defense, for example by stimulating the activity of parasitic insects. These plants were more attractive to the aphid parasitoid in the wind tunnel when tested 48 h after exposure to (Z)-jasmone had ceased. This possible signaling role of (Z)-jasmone is qualitatively different from that of the biosynthetically related methyl jasmonate and gives a long-lasting effect after removal of the stimulus. Differential display was used to compare mRNA populations in bean leaves exposed to the vapor of (Z)-jasmone and methyl jasmonate. One differentially displayed fragment was cloned and shown by Northern blotting to be up-regulated in leaf tissue by (Z)-jasmone. This sequence was identified by homology as being derived from a gene encoding an alpha-tubulin isoform.  (+info)