A new group of hepadnaviruses naturally infecting orangutans (Pongo pygmaeus). (1/102)

A high prevalence (42.6%) of hepatitis B virus (HBV) infection was suspected in 195 formerly captive orangutans due to a large number of serum samples which cross-reacted with human HBV antigens. It was assumed that such viral infections were contracted from humans during captivity. However, two wild orangutans were identified which were HBV surface antigen positive, indicating that HBV or related viruses may be occurring naturally in the orangutan populations. Sequence analyses of seven isolates revealed that orangutans were infected with hepadnaviruses but that these were clearly divergent from the six known human HBV genotypes and those of other nonhuman hepadnaviruses reported. Phylogenetic analyses revealed geographic clustering with Southeast Asian genotype C viruses and gibbon ape HBV. This implies a common origin of infection within this geographic region, with cross-species transmission of hepadnaviruses among hominoids.  (+info)

Evaluation of accumulation of hepatitis C virus mutations in a chronically infected chimpanzee: comparison of the core, E1, HVR1, and NS5b regions. (2/102)

Four hepatitis C virus genome regions (the core, E1, HVR1, and NS5b) were amplified and sequenced from yearly samples obtained from a chronically infected chimpanzee over a 12-year span. Nucleotide substitutions were found to accumulate in the core, E1, and HVR1 regions during the course of chronic infection; substitutions within the NS5b region were not detected for the first 8 years and were found to be minimal during the last 4 years. The rate of accumulation of mutations in the core and E1 regions, based on a direct comparison between the first 1979 sequence and the last 1990 sequence, was 1.120 x 10(-3), while phylogenetic ancestral comparison using the 12 yearly sequences showed a rate of 0.816 x 10(-3) bases per site per year. Temporal evaluation of the sequences revealed that there appeared to be periods in which substitutions accumulated and became fixed, followed by periods with relative stasis or random substitutions that did not persist. Synonymous and nonsynonymous substitutions within the core, E1, and HVR1 regions were also analyzed. In the core and E1 regions, synonymous substitutions predominated and gradually increased over time. However, within the HVR1 region, nonsynonymous substitutions predominated but gradually decreased over time.  (+info)

Molecular epidemiology of simian T-lymphotropic virus (STLV) in wild-caught monkeys and apes from Cameroon: a new STLV-1, related to human T-lymphotropic virus subtype F, in a Cercocebus agilis. (3/102)

A serological survey for human T-lymphotropic virus (HTLV)/simian T-lymphotropic virus (STLV) antibodies was performed in 102 wild-caught monkeys and apes from 15 (sub)species originating from Cameroon. Two animals (a Mandrillus sphinx and a Cercocebus agilis) exhibited a complete HTLV-1 seroreactivity pattern while two others lacked either the p24 (a Mandrillus sphinx) or the MTA-1/gp46 bands (a Pan troglodytes). Sequence comparison and phylogenetic analyses, using a 522 bp env gene fragment and the complete LTR, indicated that the two mandrill STLV strains belonged to the HTLV/STLV subtype D clade while the chimpanzee strain clustered in the HTLV/STLV subtype B clade. The Cercocebus agilis STLV strain, the first one found in this species, was closely related to the two HTLV/STLV subtype F strains. Such data indicate that the African biodiversity of STLV-1 in the wild is far from being known and reinforces the hypothesis of interspecies transmission of STLV-1 from monkeys and apes to humans leading to the present day distribution of HTLV-1 in African inhabitants.  (+info)

Cryptosporidiosis in people sharing habitats with free-ranging mountain gorillas (Gorilla gorilla beringei), Uganda. (4/102)

Cryptosporidiosis, a zoonotic diarrheal disease, significantly contributes to the mortality of people with impaired immune systems worldwide. Infections with an animal-adapted genotype (Genotype 2) of Cryptosporidium parvum were found in a human population in Uganda that shares habitats with free-ranging gorillas, from which the same genotype of C. parvum had been recovered previously. A high prevalence of disease was found in park staff members (21%) who frequently contact gorillas versus 3% disease prevalence in the local community. This indicates a zoonotic transmission cycle of this pathogen against which no effective prophylaxis or therapy exists. The results of the study questionnaire demonstrated a high percentage of people not undertaking appropriate precautions to prevent fecal-oral transmission of C. parvum in the Bwindi Impenetrable National Park, Uganda. This human population will benefit from stronger compliance with park regulations regarding disposal of their fecal waste within the park boundaries.  (+info)

Identification of a hepatitis B virus genome in wild chimpanzees (Pan troglodytes schweinfurthi) from East Africa indicates a wide geographical dispersion among equatorial African primates. (5/102)

DNAs from four wild chimpanzees (Pan troglodytes schweinfurthi) from eastern Africa were screened for 14 DNA viruses and retroviruses. Between two and three viruses were found in each animal. An entire hepatitis B virus (HBV) genome was amplified and sequenced from samples taken from one animal. This indicates that HBV is distributed across the entire range of chimpanzee habitats.  (+info)

Reduced transmission and prevalence of simian T-cell lymphotropic virus in a closed breeding colony of chimpanzees (Pan troglodytes verus). (6/102)

A retrospective study spanning 20 years was undertaken to investigate the prevalence and modes of transmission of a simian T-cell lymphotropic virus (STLV) in a closed breeding colony of chimpanzees. Of the 197 animals tested, 22 had antibodies that were cross-reactive with human T-cell lymphotropic virus type-1 (HTLV-I) antigens. The specificity of the antibody response was confirmed by Western blot analysis and the presence of a persistent virus infection was established by PCR analysis of DNA from peripheral blood mononuclear cells. Sequence analysis revealed that the virus infecting these chimpanzees was not HTLV-I but STLV(cpz), a virus that naturally infects chimpanzees. The limited number of transmission events suggested that management practices of social housing of family units away from troops of mature males might have prevented the majority of cases of transmission. Evidence for transmission by blood-to-blood contact was documented clearly in at least one instance. In contrast, transmission from infected mother to child was not observed, suggesting that this is not a common route of transmission for STLV in this species, which is in contrast to HTLV-1 in humans.  (+info)

Screening for simian foamy virus infection by using a combined antigen Western blot assay: evidence for a wide distribution among Old World primates and identification of four new divergent viruses. (7/102)

Simian foamy viruses (SFVs) belong to a genetically and antigenically diverse class of retroviruses that naturally infect a wide range of nonhuman primates (NHPs) and can also be transmitted to humans occupationally exposed to NHPs. Current serologic detection of SFV infection requires separate Western blot (WB) testing by using two different SFV antigens [SFV(AGM) (African green monkey) and SFV(CPZ) (chimpanzee)]. However, this method is labor intensive and validation is limited to only small numbers of NHPs. To facilitate serologic SFV testing, we developed a WB assay that combines antigens from both SFV(AGM) and SFV(CPZ). The combined-antigen WB (CA-WB) assay was validated with 145 serum samples from 129 NHPs (32 African and Asian species) and 16 humans, all with known SFV infection status determined by PCR. Concordant CA-WB results were obtained for all 145 PCR-positive or -negative primate and human specimens, giving the assay a 100% sensitivity and specificity. In addition, no reactivity was observed in sera from persons positive for human immunodeficiency virus or human T cell lymphotropic virus (HIV/HTLV) (n = 25) or HIV/HTLV-negative U.S. blood donors (n = 100). Using the CA-WB assay, we screened 360 sera from 43 Old World primate species and found an SFV prevalence of about 68% in both African and Asian primates. We also isolated SFV from the blood of four seropositive primates (Allenopithecus nigroviridis, Trachypithecus francoisi, Hylobates pileatus, and H. leucogenys) not previously known to be infected with SFV. Phylogenetic analysis of integrase sequences from these isolates confirmed that all four SFVs represent new, distinct, and highly divergent lineages. These results demonstrate the ability of the CA-WB assay to detect infection in a large number of NHP species, including previously uncharacterized infections with divergent SFVs.  (+info)

Structural and evolutionary analysis of an orangutan foamy virus. (8/102)

The full-length proviral genome of a foamy virus infecting a Bornean orangutan was amplified, and its sequence was analyzed. Although the genome showed a clear resemblance to other published foamy virus genomes from apes and monkeys, phylogenetic analysis revealed that simian foamy virus SFVora was evolutionarily equidistant from foamy viruses from other hominoids and from those from Old World monkeys. This finding suggests an independent evolution within its host over a long period of time.  (+info)