EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. (1/7)

Here we show that emb-30 is required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Germline-specific emb-30 mutant alleles block the meiotic divisions. Mutant oocytes, fertilized by wild-type sperm, set up a meiotic spindle but do not progress to anaphase I. As a result, polar bodies are not produced, pronuclei fail to form, and cytokinesis does not occur. Severe-reduction-of-function emb-30 alleles (class I alleles) result in zygotic sterility and lead to germline and somatic defects that are consistent with an essential role in promoting the metaphase-to-anaphase transition during mitosis. Analysis of the vulval cell lineages in these emb-30(class I) mutant animals suggests that mitosis is lengthened and eventually arrested when maternally contributed emb-30 becomes limiting. By further reducing maternal emb-30 function contributed to class I mutant animals, we show that emb-30 is required for the metaphase-to-anaphase transition in many, if not all, cells. Metaphase arrest in emb-30 mutants is not due to activation of the spindle assembly checkpoint but rather reflects an essential emb-30 requirement for M-phase progression. A reduction in emb-30 activity can suppress the lethality and sterility caused by a null mutation in mdf-1, a component of the spindle assembly checkpoint machinery. This result suggests that delaying anaphase onset can bypass the spindle checkpoint requirement for normal development. Positional cloning established that emb-30 encodes the likely C. elegans orthologue of APC4/Lid1, a component of the anaphase-promoting complex/cyclosome, required for the metaphase-to-anaphase transition. Thus, the anaphase-promoting complex/cyclosome is likely to be required for all metaphase-to-anaphase transitions in a multicellular organism.  (+info)

TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. (2/7)

BACKGROUND: Chromosome segregation and mitotic exit depend on activation of the anaphase-promoting complex (APC) by the substrate adaptor proteins CDC20 and CDH1. The APC is a ubiquitin ligase composed of at least 11 subunits. The interaction of APC2 and APC11 with E2 enzymes is sufficient for ubiquitination reactions, but the functions of most other subunits are unknown. RESULTS: We have biochemically characterized subcomplexes of the human APC. One subcomplex, containing APC2/11, APC1, APC4, and APC5, can assemble multiubiquitin chains but is unable to bind CDH1 and to ubiquitinate substrates. The other subcomplex contains all known APC subunits except APC2/11. This subcomplex can recruit CDH1 but fails to support any ubiquitination reaction. In vitro, the C termini of CDC20 and CDH1 bind to the closely related TPR subunits APC3 and APC7. Homology modeling predicts that these proteins are similar in structure to the peroxisomal import receptor PEX5, which binds cargo proteins via their C termini. APC activation by CDH1 depends on a conserved C-terminal motif that is also found in CDC20 and APC10. CONCLUSIONS: APC1, APC4, and APC5 may connect APC2/11 with TPR subunits. TPR domains in APC3 and APC7 recruit CDH1 to the APC and may thereby bring substrates into close proximity of APC2/11 and E2 enzymes. In analogy to PEX5, the different TPR subunits of the APC might function as receptors that interact with the C termini of regulatory proteins such as CDH1, CDC20, and APC10.  (+info)

Dim1p is required for efficient splicing and export of mRNA encoding lid1p, a component of the fission yeast anaphase-promoting complex. (3/7)

Schizosaccharomyces pombe Dim1p is required for maintaining the steady-state level of the anaphase-promoting complex or cyclosome (APC/C) component Lid1p and thus for maintaining the steady-state level and activity of the APC/C. To gain further insight into Dim1p function, we have investigated the mechanism whereby Dim1p influences Lid1p levels. We show that S. pombe cells lacking Dim1p or Saccharomyces cerevisiae cells lacking its ortholog, Dib1p, are defective in generalized pre-mRNA splicing in vivo, a result consistent with the identification of Dim1p as a component of the purified yeast U4/U6.U5 tri-snRNP complex. Moreover, we find that Dim1p is part of a complex with the splicing factor Prp1p. However, although Dim1p is required for efficient splicing of lid1(+) pre-mRNA, circumventing the necessity for this particular function of Dim1p is insufficient for restoring normal Lid1p levels. Finally, we provide evidence that Dim1p also participates in the nuclear export of lid1(+) mRNA and that it is likely the combined loss of both of these two Dim1p functions which compromises Lid1p levels in the absence of proper Dim1p function. These data indicate that a mechanism acting at the level of mRNA impacts the functioning of the APC/C, a critical complex in controlling mitotic progression.  (+info)

Progression from a stem cell-like state to early differentiation in the C. elegans germ line. (4/7)

 (+info)

Inactivation and disassembly of the anaphase-promoting complex during human cytomegalovirus infection is associated with degradation of the APC5 and APC4 subunits and does not require UL97-mediated phosphorylation of Cdh1. (5/7)

 (+info)

Proteasome-dependent disruption of the E3 ubiquitin ligase anaphase-promoting complex by HCMV protein pUL21a. (6/7)

 (+info)

Identification of a cullin homology region in a subunit of the anaphase-promoting complex. (7/7)

The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). The remaining four human APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned. APC7 contains multiple copies of the tetratrico peptide repeat, similar to CDC16, CDC23, and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function, APC2 contains a region that is similar to a sequence in cullins, a family of proteins implicated in the ubiquitination of G1 phase cyclins and cyclin-dependent kinase inhibitors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be distantly related members of a ubiquitin ligase family that targets cell cycle regulators for degradation.  (+info)