Cyclic GMP-associated apamin-sensitive nitrergic slow inhibitory junction potential in the hamster ileum. (25/590)

1. The mediators of non-adrenergic, non-cholinergic (NANC) inhibitory junction potentials (i.j.ps) in the circular smooth muscle cells of the hamster ileum were studied. 2. Electrical field stimulation (EFS; 0.5 ms duration, 15 V) of the intramural nerves with a train of five pulses at 20 Hz evoked a rapidly developing hyperpolarization (fast i.j.p.) followed by a sustained hyperpolarization (slow i.j.p.). 3. NG-nitro-L-arginine methyl ester (L-NAME; 50 - 200 microM) and NG-nitro-L-arginine (L-NNA; 50 - 200 microM), NO synthase inhibitors, inhibited or abolished the EFS-induced fast and slow NANC i.j.ps. The effects of these NO synthase inhibitors were reversed by L-arginine (5 mM) but not by D-arginine (5 mM). 4. Exogenously applied nitric oxide (NO; 1 - 100 microM) induced concentration-dependent hyperpolarizations. 5. Oxyhaemoglobin (5 - 50 microM), NO scavenger, inhibited only the slow i.j.p., and the NO-induced hyperpolarization. 6. 1H-[1,2,4]oxadiazolo[4, 3-a]quinoxaline-1-one (ODQ; 10 microM) and cystamine (10 mM), guanylate cyclase inhibitors, inhibited only the slow i.j.p. Zaprinast (100 microM), a phosphodiesterase type V inhibitor, enhanced the amplitude and duration of the slow i.j.p. 7. Apamin (100 nM), a small conductance Ca2+-activated K+ channel blocker, inhibited only the slow i.j.p., and NO-induced hyperpolarization. A high concentration of 8-bromoguanosine 3':5'-cyclic monophosphate (8-bromo-cGMP; 1 mM)-induced membrane hyperpolarization which was blocked by apamin. 8. These results suggest that NO, or a related compound, may be the inhibitory transmitter underlying the apamin-sensitive NANC slow i.j.p. and cyclic GMP mediates the slow i. j.p. in the hamster ileum. It is also likely that NO, without involvement of guanylate cyclase is associated with the fast i.j.p.  (+info)

K(+)-induced neurogenic relaxation of rat distal colon. (26/590)

Relaxations of segments of rat distal colon were elicited by hypertonic solutions of potassium (K(+); final concentration, 20.8 or 50.8 mM). The initial part of the response to K(+) was antagonized by the nerve blocker tetrodotoxin. This effect could, moreover, be significantly antagonized by apamin (a blocker of K(+) channels), reactive blue 2 (a P(2y)-purinoceptor antagonist), N(G)-nitro-L-arginine (an inhibitor of NO synthase), 1H-[1,2,4]- oxadiazolo[4,3-a]quinoxaline-1-one (ODQ; an inhibitor of soluble guanylyl cyclase), or N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89; an inhibitor of cAMP-dependent protein kinase). Sodium nitroprusside (a donor of NO) and vasoactive intestinal peptide (VIP) both relaxed the tissues. The response to sodium nitroprusside was abolished by ODQ and unaffected by H-89, and that to VIP was partially inhibited by VIP(10-28) (a VIP receptor antagonist), ODQ, or H-89. When combining reactive blue 2 and N(G)-nitro-L-arginine, the response to 50.8 mM K(+) was reduced by approximately 70% and was abolished by the concomitant administration of these antagonists and VIP(10-28). ATP, NO, and VIP may, thus, be inhibitory neurotransmitters in rat distal colon.  (+info)

Enhanced acetylcholine and P2Y-receptor stimulated vascular EDHF-dilatation in congestive heart failure. (27/590)

OBJECTIVE: Congestive heart failure (CHF) is accompanied by impaired peripheral blood flow and endothelial dysfunction with decreased release of nitric oxide (NO). Strong evidence supports the existence of another vasodilatory substance, endothelium derived hyperpolarising factor (EDHF), which has not previously been studied in CHF. METHOD: CHF was induced by left coronary artery ligation resulting in a reproducible myocardial infarction in Sprague Dawley rats. Vasodilatory responses to acetylcholine and extracellular nucleotides (ATP, ADP beta S, ADP and UTP) were examined in cylindrical segments of the mesenteric artery, precontracted with noradrenaline. The combined NO- and EDHF-dilatation (after inhibition of cyclo-oxygenase pathways) was called "total dilatation", as indomethacin had only minor effects in this system. NO-dilatation was studied in segments pretreated with indomethacin and the potassium channel inhibitors charybdotoxin (10(-7.5) M) and apamin (10(-6) M), while EDHF-dilatations were studied in the presence of indomethacin (10(-5) M) and L-NOARG (10(-3.5) M). RESULTS: EDHF-dilatations in CHF were strongly up-regulated for ACh (36% vs. 73%; sham vs. CHF operated rats), ADP beta S (10% vs. 42%), ADP (0% vs. 21%) and UTP (3% vs. 35%). These dilatations were abolished by a combination of charybdotoxin and apamin, confirming that they were mediated by EDHF. The NO-dilatations on the other hand were down-regulated in CHF as compared to sham operated rats for ACh (93% vs. 76%; sham vs. CHF operated rats), ADP beta S (61% vs. 37%). ADP (60% vs. 30%), ATP (49% vs. 34%) and UTP (65% vs. 47%), while a minor decrease was seen in the total dilatation for ACh (87% vs. 75%; sham vs. CHF operated rats), ADP beta S (47% vs. 42%), ADP (59% vs. 39%), ATP (52% vs. 39%) and UTP (59% vs. 44%). CONCLUSION: In this model of non-atherosclerotic CHF there was a minor decrease in the total dilatation and a marked down-regulation of the NO-mediated dilatation, while the EDHF-dilatation was up-regulated. Increased EDHF-activity in CHF may represent a compensatory response to decreased NO-activity to preserve endothelial function and tissue perfusion.  (+info)

Human GHRH reduces voltage-gated K+ currents via a non-cAMP-dependent but PKC-mediated pathway in human GH adenoma cells. (28/590)

1. Whole-cell voltage-gated K+ currents and the K+ current response to growth hormone-releasing hormone (GHRH) were characterised in primary cultures of human acromegalic somatotropes. 2. Both delayed rectifier (IK) and transient (IA) K+ currents were recorded from human somatotropes held at -80 mV and bathed in a solution containing Cd2+ (1 mM), TTX (1 microM) and a low concentration of Ca2+ (0.5 mM). Only IK was recorded, however, when a holding potential of -40 mV was used. 3. GHRH (10 nM) immediately and significantly reduced the amplitude of both IA and IK. While the reduction in the amplitude of IA was fully reversed following the removal of GHRH, the amplitude of IK had only partially recovered 10 min after GHRH removal. In addition, GHRH shifted the voltage-dependent inactivation curve of IA by 13.5 mV in the negative direction. 4. In a low Ca2+ and Cd2+-containing solution, the Ca2+-activated K+ channel blockers apamin (100 nM and 1 microM) and charybdotoxin (1 microM) did not alter K+ currents or the effect of GHRH on the recorded K+ currents. 5. The whole-cell K+ currents and their responses to GHRH were unaffected by the application of 8-bromo-cAMP (100 microM), Rp-cAMP (100 microM) or the protein kinase A (PKA) inhibitor H89 (1 microM). In addition, intracellular dialysis of the PKA inhibitory peptide PKI (10 microM) had no effect on the K+ current response to GHRH. 6. While the application of protein kinase C (PKC) inhibitors calphostin C (100 nM) or chelerythrine (1 microM) did not affect the amplitude of the K+ currents, the K+ current response to GHRH was significantly attenuated. Downregulation of PKC with phorbol 12,13-dibutyrate (PDBu, 0.5 microM for 16 h) also abolished the K+ current response to GHRH. In addition, intracellular dialysis of somatotropes with the PKC inhibitory peptide PKC19-36 (1 microM) prevented the GHRH-induced decrease in the amplitude of the voltage-gated K+ currents. Local application of PDBu (1 microM) significantly reduced the amplitude of the voltage-gated K+ currents in a similar manner to that induced by GHRH, but without clear recovery upon removal. 7. This study demonstrates that GHRH decreases voltage-gated K+ currents via a PKC-mediated pathway in human adenoma somatotropes, rather than by the cAMP-PKA pathway that is usually implicated in the actions of GHRH.  (+info)

Apamin-sensitive conductance mediates the K(+) current response during chemical ischemia in CA3 pyramidal cells. (29/590)

Pyramidal cells typically respond to ischemia with initial transient hyperpolarization, which may represent a neuroprotective response. To identify the conductance underlying this hyperpolarization in CA3 pyramidal neurons of rat hippocampal organotypic slice cultures, recordings were obtained using the single-electrode voltage-clamp technique. Brief chemical ischemia (2 mM 2-deoxyglucose and 3 mM NaN(3), for 4 min) induced a response mediated by an increase in K(+) conductance. This current was blocked by intracellular application of the Ca(2+) chelator, bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid (BAPTA), reduced with low external [Ca(2+)], and inhibited by a selective L-type Ca(2+) channel inhibitor, isradipine, consistent with the activation of a Ca(2+)-dependent K(+) conductance. Experiments with charybdotoxin (10 nM) and tetraethylammonium (TEA; 1 mM), or with the protein kinase C activator, phorbol 12,13-diacetate (PDAc; 3 microM), ruled out an involvement of a large conductance-type or an apamin-insensitive small conductance, respectively. In the presence of apamin (1 microM), however, the outward current was significantly reduced. These results demonstrate that in rat hippocampal CA3 pyramidal neurons an apamin-sensitive Ca(2+)-dependent K(+) conductance is activated in response to brief ischemia generating a pronounced outward current.  (+info)

Characterization of tetrandrine-induced inhibition of large-conductance calcium-activated potassium channels in a human endothelial cell line (HUV-EC-C). (30/590)

The effects of tetrandrine, a blocker of voltage-dependent Ca(2+) channels, on ionic currents were investigated in an endothelial cell line (HUV-EC-C) originally derived from human umbilical vein. In whole-cell configuration, tetrandrine (0.5-50 microM) reversibly decreased the amplitude of K(+) outward currents. The IC(50) value of tetrandrine-induced decrease in outward current was 5 microM. The K(+) outward current in response to depolarizing voltage pulses was also inhibited by iberiotoxin (200 nM), yet not by glibenclamide (10 microM) or apamin (200 nM). The reduced amplitude of outward current by tetrandrine can be reversed by the further addition of Evans' blue (30 microM) or niflumic acid (30 microM). Thus, the tetrandrine-sensitive component of outward current is believed to be Ca(2+)-activated K(+) current. Pretreatment with thapsigargin (1 microM) or sodium nitroprusside (10 microM) for 5 h did not prevent tetrandrine-mediated inhibition of outward current. In outside-out configuration, bath application of tetrandrine (5 microM) did not change the single-channel conductance but significantly reduced the opening probability of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels. The tetrandrine-mediated decrease in the channel activity was independent on internal Ca(2+) concentration. Tetrandrine (5 microM) can also shift the activation curve of BK(Ca) channels to more positive potentials by approximately 20 mV. The change in the kinetic behavior of BK(Ca) channels caused by tetrandrine is due to a decrease in mean open time and an increase in mean closed time. The present study provides substantial evidence that tetrandrine is capable of suppressing the activity of BK(Ca) channels in endothelial cells. The direct inhibition of these channels by tetrandrine should contribute to its effect on the functional activities of endothelial cells.  (+info)

Nitric oxide-dependent and -independent mechanisms account for gender differences in vasodilation to acetylcholine. (31/590)

The purpose of this study was to examine the mechanism of enhanced endothelium-dependent dilation in arteries from female rats compared with arteries from males. Isolated mesenteric resistance arteries ( approximately 250 microm) from sexually mature male and female Sprague-Dawley rats were pressurized and outer diameter was measured. Arteries from females were more sensitive to the endothelium-dependent vasodilator acetylcholine (Ach) compared with those from males (-log EC(50): male = 6.74 +/- 0.06; female = 6.96 +/- 0.06; P =.037). After incubation with N(omega)-nitro-L-arginine (100 microM) or apamin (30 nM), there was no longer a gender difference in midrange sensitivity to ACh. In contrast, at higher concentrations of ACh, N(omega)-nitro-L-arginine had a greater inhibitory effect in the males than in the females. Indomethacin (10 microM) decreased sensitivity to ACh in arteries from both males and females, but did not alter the maximal response or eliminate the gender difference. Finally, there was no gender difference in vasodilation to the nitric oxide (NO) donor spermine-NO complex, nor did apamin alter the spermine-NO complex response. In conclusion, mesenteric arteries from female rats are more sensitive to ACh than those from males. An enhanced contribution of an apamin-sensitive K(Ca) channel on the endothelium of female arteries appears to be responsible for the augmented ACh-stimulated NO production compared with that of males. In addition, ACh stimulates the production of a non-NO, noncyclooxygenase, endothelium-derived hyperpolarizing factor to a greater extent in females compared with males.  (+info)

Electrophysiological characterization of voltage-gated K(+) currents in cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. (32/590)

To understand the processes underlying fast synaptic transmission in the mammalian CNS, we must have detailed knowledge of the identity, location, and physiology of the ion channels in the neuronal membrane. From labeling studies we can get clues regarding the distribution of ion channels, but electrophysiological methods are required to determine the importance of each ion channel in CNS transmission. Dendrotoxin-sensitive potassium channel subunits are highly concentrated in cerebellar basket cell nerve terminals, and we have previously shown that they are responsible for a significant fraction of the voltage-gated potassium current in this region. Here, we further investigate the characteristics and pharmacology of the voltage-dependent potassium currents in these inhibitory nerve terminals and compare these observations with those obtained from somatic recordings in basket and Purkinje cell soma regions. We find that alpha-DTX blocks basket cell nerve terminal currents and not somatic currents, and the IC(50) for alpha-DTX in basket cell terminals is 3.2 nM. There are at least two distinct types of potassium currents in the nerve terminal, a DTX-sensitive low-threshold component, and a second component that activates at much more positive voltages. Pharmacological experiments also reveal that nerve terminal potassium currents are also markedly reduced by 4-AP and TEA, with both high-sensitivity (micromolar) and low-sensitivity (millimolar) components present. We suggest that basket cell nerve terminals have potassium channels from both the Kv1 and Kv3 subfamilies, whereas somatic currents in basket cell and Purkinje cell bodies are more homogeneous.  (+info)