Ecological meltdown in predator-free forest fragments. (41/1059)

The manner in which terrestrial ecosystems are regulated is controversial. The "top-down" school holds that predators limit herbivores and thereby prevent them from overexploiting vegetation. "Bottom-up" proponents stress the role of plant chemical defenses in limiting plant depredation by herbivores. A set of predator-free islands created by a hydroelectric impoundment in Venezuela allows a test of these competing world views. Limited area restricts the fauna of small (0.25 to 0.9 hectare) islands to predators of invertebrates (birds, lizards, anurans, and spiders), seed predators (rodents), and herbivores (howler monkeys, iguanas, and leaf-cutter ants). Predators of vertebrates are absent, and densities of rodents, howler monkeys, iguanas, and leaf-cutter ants are 10 to 100 times greater than on the nearby mainland, suggesting that predators normally limit their populations. The densities of seedlings and saplings of canopy trees are severely reduced on herbivore-affected islands, providing evidence of a trophic cascade unleashed in the absence of top-down regulation.  (+info)

Intraluteal release of angiotensin II and progesterone in vivo during corpora lutea development in the cow: effect of vasoactive peptides. (42/1059)

The newly formed corpus luteum (CL) develops rapidly and has the features of active vascularization and mitosis of steroidogenic cells. Such local mechanisms must be strictly regulated by the complex relationship between angiogenic growth factors and vasoactive peptides such as angiotensin (Ang) II, atrial natriuretic peptide (ANP), and endothelin (ET)-1. Thus, the objective of the present study was to determine 1) the changes in vasoactive peptides and progesterone (P) concentrations within the developing CL, along with the changes in concentration in ovarian venous plasma (OVP) and jugular venous plasma (JVP) in the cow, 2) the effects of CL exposure to vasoactive peptides on Ang II and P secretion, and 3) the expression of mRNA for ANP type C receptor in the bovine CL and endothelial cells (ETC) from bovine developing CL. A microdialysis system (MDS) was surgically implanted into multiple CL of six cows on Day 3 after a GnRH injection that induced superovulation, and a catheter was simultaneously inserted into the ovarian vein. The Ang II concentration in OVP was higher than that in JVP throughout the experiment, while the intraluteal release of Ang II was stable. During the experimental period, the concentrations of other vasoactive peptides (ANP and ET-1) showed no clear changes in plasma and were below detectable levels in the MDS perfusate. Exposure of CL to Ang II using the MDS stimulated P release, while exposure to ANP enhanced Ang II release within the developing CL. However, ET-1 had no effect on either P or Ang II release. The expression of mRNA for ANP type C receptor was mainly observed in early CL and ETC. The results suggest that the ET-Ang-ANP system in the preovulatory follicle switches to an Ang-ANP system to enhance both the angiogenesis and steroidogenesis that are actively occurring in developing CL.  (+info)

Ant workers selfishly bias sex ratios by manipulating female development. (43/1059)

Kin selection theory predicts that social insects should perform selfish manipulations as a function of colony genetic structure. We describe a novel mechanism by which this occurs. First, we use microsatellite analyses to show that, in a population of the ant Leptothorax acervorum, workers' relatedness asymmetry (ratio of relatedness to females and relatedness to males) is significantly higher in monogynous (single-queen) colonies than in polygynous (multiple-queen) colonies. Workers rear mainly queens in monogynous colonies and males in polygynous colonies. Therefore, split sex ratios in this population are correlated with workers' relatedness asymmetry. Together with significant female bias in the population numerical and investment sex ratios, this finding strongly supports kin-selection theory. Second, by determining the primary sex ratio using microsatellite markers to sex eggs, we show that the ratio of male to female eggs is the same in both monogynous and polygynous colonies and equals the overall ratio of haploids (males) to diploids (queens and workers) among adults. In contrast to workers of species with selective destruction of male brood, L. acervorum workers therefore rear eggs randomly with respect to sex and must achieve their favoured sex ratios by selectively biasing the final caste (queen or worker) of developing females.  (+info)

Egocentric information helps desert ants to navigate around familiar obstacles. (44/1059)

Homing ants have been shown to associate directional information with familiar landmarks. The sight of these local cues might either directly guide the path of the ant or it might activate a landmark-based vector that points towards the goal position. In either case, the ants define their courses within allocentric systems of reference. Here, we show that desert ants, Cataglyphis fortis, forced to run along a devious path can use egocentric information as well. The ants were trained to deviate from their straight homebound course by a wide inconspicuous barrier that was placed between the feeding and nesting sites. At a distant test area, the ants were confronted with an identical barrier rotated through 45 degrees. After passing the edge of the obstacle, the ants did not proceed in the trained direction, defined by the skylight compass, but rotated their courses to match the rotation of the barrier. Visual guidance could be excluded because, as soon as the ants turned around the end of the barrier, the visual cue it provided vanished from their field of view. Instead, the ants must have maintained a constant angle relative to their previous walking trajectory along the obstacle and, hence, must have determined their new vector course in an egocentric way.  (+info)

Behavioral genetics: a gene for supersociality. (45/1059)

In the fire ant, the number of queens per colony is determined by the workers' Gp-9 genotype. This gene has been found to encode an odorant binding protein, which probably influences workers' abilities to recognize queens and regulate their numbers. Remarkably, the same gene seems to control social organization in three other closely related species.  (+info)

Adaptive production of fighter males: queens of the ant Cardiocondyla adjust the sex ratio under local mate competition. (46/1059)

Hamilton's concept of local mate competition (LMC) is the standard model to explain female-biased sex ratios in solitary Hymenoptera. In social Hymenoptera, however, LMC has remained controversial, mainly because manipulation of sex allocation by workers in response to relatedness asymmetries is an additional powerful mechanism of female bias. Furthermore, the predominant mating systems in the social insects are thought to make LMC unlikely. Nevertheless, several species exist in which dispersal of males is limited and mating occurs in the nest. Some of these species, such as the ant Cardiocondyla obscurior, have evolved dimorphic males, with one morph being specialized for dispersal and the other for fighting with nest-mate males over access to females. Such life history, combining sociality and alternative reproductive tactics in males, provides a unique opportunity to test the power of LMC as a selective force leading to female-biased sex ratios in social Hymenoptera. We show that, in concordance with LMC predictions, an experimental increase in queen number leads to a shift in sex allocation in favour of non-dispersing males, but does not influence the proportion of disperser males. Furthermore, we can assign this change in sex allocation at the colony level to the queens and rule out worker manipulation.  (+info)

The visual centring response in desert ants, Cataglyphis fortis. (47/1059)

When negotiating their way through cluttered environments, desert ants, Cataglyphis fortis, tend to run along the midlines of the alleys formed by adjacent low shrubs. This 'centring response' was investigated by inducing foraging ants to walk through artificial channels. The sidewalls of the channel were either homogeneously black or provided with stationary or moving black-and-white gratings. The speed of motion and the spatial period of the gratings and the height of the walls could be varied independently on the left-hand and right-hand sides of the channel. The results clearly show that the ants, while exhibiting their centring responses, try to balance neither the self-induced image speeds nor the contrast frequencies seen in their left and right visual fields, but the vertical angle subtended by the landmarks on either side. When manoeuvring through the channel, the ants always adjust the lateral positions of their walking trajectories in such a way that the vertical angles subtended by the walls are identical for both eyes.  (+info)

Deleterious Wolbachia in the ant Formica truncorum. (48/1059)

Wolbachia is a maternally inherited bacterium that may manipulate the reproduction of its arthropod hosts. In insects, it is known to lead to inviable matings, cause asexual reproduction or kill male offspring, all to its own benefit, but to the detriment of its host. In social Hymenoptera, Wolbachia occurs widely, but little is known about its fitness effects. We report on a Wolbachia infection in the wood ant Formica truncorum, and evaluate whether it influences reproductive patterns. All 33 colonies of the study population were infected, suggesting that Wolbachia infection is at, or close to, fixation. Interestingly, in colonies with fewer infected workers, significantly more sexuals are produced, indicating that Wolbachia has deleterious effects in this species. In addition, adult workers are shown to have significantly lower infection rates (45%) than worker pupae (87%) or virgin queens (94%), suggesting that workers lose their infection over life. Clearance of Wolbachia infection has, to our knowledge, never been shown in any other natural system, but we argue that it may, in this case, represent an adaptive strategy to reduce colony load. The cause of fixation requires further study, but our data strongly suggest that Wolbachia has no influence on the sex ratio in this species.  (+info)