Assessing genetic structure with multiple classes of molecular markers: a case study involving the introduced fire ant Solenopsis invicta. (1/1059)

We used 30 genetic markers of 6 different classes to describe hierarchical genetic structure in introduced populations of the fire ant Solenopsis invicta. These included four classes of presumably neutral nuclear loci (allozymes, codominant random amplified polymorphic DNAs (RAPDs), microsatellites, and dominant RAPDs), a class comprising two linked protein-coding nuclear loci under selection, and a marker of the mitochondrial DNA (mtDNA). Patterns of structure revealed by F statistics and exact tests of differentiation were highly concordant among the four classes of neutral nuclear markers, although the microsatellites were the most effective markers for detecting structure. The results from the mtDNA complemented those from the neutral nuclear markers by revealing that strong limitations to female-mediated gene flow were the cause of the local structure registered by the nuclear markers. The pattern of structure inferred from the selected nuclear loci was markedly different from the patterns derived from the other sets of markers but was predictable on the basis of the presumed mode of selection acting on these loci. In general, the results for all six classes of markers can be explained by known features of the social and reproductive biology of fire ants. Thus, the results from these diverse sets of markers, combined with detailed natural history data, provide an unusually complete picture of how the fundamental evolutionary forces of gene flow, drift, and selection govern the distribution of genetic variation within and between fire ant populations.  (+info)

Calibration of vector navigation in desert ants. (2/1059)

Desert ants (Cataglyphis sp.) monitor their position relative to the nest using a form of dead reckoning [1] [2] [3] known as path integration (PI) [4]. They do this with a sun compass and an odometer to update an accumulator that records their current position [1]. Ants can use PI to return to the nest [2] [3]. Here, we report that desert ants, like honeybees [5] and hamsters [6], can also use PI to approach a previously visited food source. To navigate to a goal using only PI information, a forager must recall a previous state of the accumulator specifying the goal, and compare it with the accumulator's current state [4]. The comparison - essentially vector subtraction - gives the direction to the goal. This whole process, which we call vector navigation, was found to be calibrated at recognised sites, such as the nest and a familiar feeder, throughout the life of a forager. If a forager was trained around a one-way circuit in which the result of PI on the return route did not match the result on the outward route, calibration caused the ant's trajectories to be misdirected. We propose a model of vector navigation to suggest how calibration could produce such trajectories.  (+info)

Attachment forces of ants measured with a centrifuge: better 'wax-runners' have a poorer attachment to a smooth surface. (3/1059)

The symbiotic ant partners of glaucous Macaranga ant-plants show an exceptional capacity to run on the slippery epicuticular wax crystals covering the plant stem without any difficulty. We test the hypothesis that these specialised 'wax-runners' have a general, superior attachment capacity. We compared attachment on a smooth surface for 11 ant species with different wax-running capacities. The maximum force that could be withstood before an ant became detached was quantified using a centrifuge recorded by a high-speed video camera. This technique has the advantage of causing minimum disruption and allows measurements in very small animals. When strong centrifugal forces were applied, the ants showed a conspicuous 'freezing reflex' advantageous to attachment. Attachment forces differed strongly among the ant species investigated. This variation could not be explained by different surface area/weight ratios of smaller and larger ants. Within species, however, detachment force per body weight (F/W) scaled with the predicted value of W(-)(0.33), where W is body weight in newtons. Surprisingly, our results not only disprove the hypothesis that 'wax-runners' generally attach better but also provide evidence for the reverse effect. Superior 'wax-runners' (genera Technomyrmex and Crematogaster) did not cling better to smooth Perspex, but performed significantly worse than closely related congeners that are unable to climb up waxy stems. This suggests an inverse relationship between adaptations to run on wax and to attach to a smooth surface.  (+info)

Octopamine reverses the isolation-induced increase in trophallaxis in the carpenter ant Camponotus fellah. (4/1059)

Social deprivation is an unusual situation for ants that normally maintain continuous contact with their nestmates. When a worker was experimentally isolated for 5 days and then reunited with a nestmate, she engaged in prolonged trophallaxis. It is suggested that trophallaxis allows her to restore a social bond with her nestmates and to re-integrate into the colony, particularly via the exchange of colony-specific hydrocarbons. Octopamine reduced trophallaxis in these workers as well as hydrocarbon transfer between nestmates, but not hydrocarbon biosynthesis. Administration of serotonin to such 5-day-isolated ants had no effect on the percentage of trophallaxis. Administration of phentolamine alone, an octopamine antagonist, had no effect, but when co-administrated with octopamine it reduced the effect of octopamine alone and restored trophallaxis to control levels. Moreover, the observed effect of octopamine was not due to a non-specific effect on locomotor activity. Therefore, we hypothesise that octopamine mediates behaviour patterns linked to social bonding, such as trophallaxis. On the basis of an analogy with the role of norepinephrine in vertebrates, we suggest that the levels of octopamine in the brain of socially deprived ants may decrease, together with a concomitant increase in their urge to perform trophallaxis and to experience social contacts. Octopamine administration may reduce this social deprivation effect, and octopamine could therefore be regarded as being partly responsible for the social cohesion between nestmates in ant colonies.  (+info)

Electron paramagnetic resonance study of the migratory ant Pachycondyla marginata abdomens. (5/1059)

Electron paramagnetic resonance was used to investigate the magnetic material present in abdomens of Pachycondyla marginata ants. A g congruent with 4.3 resonance of high-spin ferric ions and a very narrow g congruent with 2 line are observed. Two principal resonance broad lines, one with g > 4.5 (LF) and the other in the region of g congruent with 2 (HF), were associated with the biomineralization process. The resonance field shift between these two lines, HF and LF, associated with magnetic nanoparticles indicates the presence of cluster structures containing on average three single units of magnetite-based nanoparticles. Analysis of the temperature dependence of the HF resonance linewidths supports the model picture of isolated magnetite nanostructures of approximately 13 nm in diameter with a magnetic energy of 544 K. These particles are shown to present a superparamagnetic behavior at room temperature. The use of these superparamagnetic particle properties for the magnetoreception process of the ants is suggested.  (+info)

Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. (6/1059)

Desert ants, Cataglyphis fortis, search for a repeatedly visited food source by employing a combined olfactory and anemotactic orientation strategy (in addition to their visually based path-integration scheme). This behaviour was investigated by video-tracking consecutive foraging trips of individually marked ants under a variety of experimental conditions, including manipulations of the olfactory and wind-detecting systems of the ants. If the wind blows from a constant direction, ants familiar with the feeding site follow outbound paths that lead them into an area 0.5-2.5 m downwind of the feeding station. Here, the ants apparently pick up odour plumes emanating from the food source and follow these by steering an upwind course until they reach the feeder. If the food is removed, foragers usually concentrate their search movements within the area downwind of the feeding site. Only when the wind happens to subside or when tail-wind conditions prevail do the ants steer direct courses towards the food. Elimination of olfactory input by clipping the antennal flagella, or of wind perception by immobilising the bases of the antennae, altered the foraging behaviour of the ants in ways that supported these interpretations. Ants with clipped flagella were never observed to collect food items.  (+info)

Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. (7/1059)

The present account answers the question of whether desert ants (Cataglyphis fortis) gauge the distance they have travelled by using self-induced lateral optic-flow parameters, as has been described for bees. The ants were trained to run to a distant food source within a channel whose walls were covered with black-and-white gratings. From the food source, they were transferred to test channels of double or half the training width, and the distance they travelled before searching for home and their walking speeds were recorded. Since the animals experience different motion parallax cues when walking in the broader or narrower channels, the optic-flow hypothesis predicted that the ants would walk faster and further in the broader channels, but more slowly and less far in the narrower channels. In contrast to this expectation, neither the walking speeds nor the searching distances depended on the width or height of the channels or on the pattern wavelengths. Even when ventral-field visual cues were excluded by covering the eyes with light-tight paint, the ants were not influenced by lateral optic flow-field cues. Hence, walking desert ants do not depend on self-induced visual flow-field cues in gauging the distance they have travelled, as do flying honeybees, but can measure locomotor distance exclusively by idiothetic means.  (+info)

Three energy variables predict ant abundance at a geographical scale. (8/1059)

Energy theory posits three processes that link local abundance of ectotherms to geographical gradients in temperature. A survey of 49 New World habitats found a two order of magnitude span in the abundance (nests m(-2)) of ground nesting ants (Formicidae). Abundance increased with net primary productivity (r2=0.55), a measure of the baseline supply of harvestable energy. Abundance further increased with mean temperature (r2=0.056), a constraint on foraging activity for this thermophilic taxon. Finally for a given mean temperature, ants were more abundant in seasonal sites with longer, colder winters (r2 = 0.082) that help ectotherm taxa sequester harvested energy in non-productive months. All three variables are currently changing on a global scale. All should be useful in predicting biotic responses to climate change.  (+info)