Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia-reperfusion injury by reducing inflammation. (65/701)

Functional inhibition of tissue factor (TF) has been shown to improve coronary blood flow after myocardial ischemia/reperfusion (I/R) injury. TF initiates the coagulation protease cascade, resulting in the generation of the serine protease thrombin and fibrin deposition. Thrombin can also contribute to an inflammatory response by activating various cell types, including vascular endothelial cells. We used a rabbit coronary ligation model to investigate the role of TF in acute myocardial I/R injury. At-risk areas of myocardium showed increased TF expression in the sarcolemma of cardiomyocytes, which was associated with a low level of extravascular fibrin deposition. Functional inhibition of TF activity with an anti-rabbit TF monoclonal antibody administered either 15 minutes before or 30 minutes after coronary ligation reduced infarct size by 61% (P = 0.004) and 44% (P = 0.014), respectively. Similarly, we found that inhibition of thrombin with hirudin reduced infarct size by 59% (P = 0.014). In contrast, defibrinogenating the rabbits with ancrod had no effect on infarct size, suggesting that fibrin deposition does not significantly contribute to infarct size. Functional inhibition of thrombin reduced chemokine expression and inhibition of either TF or thrombin reduced leukocyte infiltration. We propose that cardiomyocyte TF initiates extravascular thrombin generation, which enhances inflammation and injury during myocardial I/R.  (+info)

Pharmacodynamics and pharmacokinetics of polyethylene glycol-hirudin in patients with chronic renal failure. (66/701)

BACKGROUND: Hirudin selectively inhibits thrombin without cofactors and is eliminated via the kidneys. Recombinant hirudin (r-hi) has a terminal elimination half-life (t1/2) of about 50 to 100 minutes. Coupling of polyethylene glycol (PEG) to r-hi, giving PEG-hirudin (PEG-Hi), prolongs its t1/2 while enhancing efficacy. We looked at the pharmacodynamic and pharmacokinetic behavior of PEG-Hi in patients with impaired renal function. METHODS: Anticoagulant activity and the pharmacokinetic parameters of a single intravenous bolus injection of 0.05 mg/kg body weight PEG-Hi were studied in 38 subjects. They were assigned to five groups: group IA, creatinine clearance (CCr) >/= 80 mL/min, 8 healthy volunteers; group IB, CCr >/= 80 mL/min, 8 patients with normal renal function); group II, CCr 79 to 50 mL/min, 7 patients with mild chronic renal failure (CRF); group III, CCr 49 to 20 mL/min, 10 patients with moderate CRF; and group IV, CCr +info)

Antiangiogenic effects of latent antithrombin through perturbed cell-matrix interactions and apoptosis of endothelial cells. (67/701)

Antithrombin is a plasma protein of the serpin superfamily that may occur as several conformational variants. The native form of antithrombin is a major regulator of blood clotting. In the present study, we have identified the mechanism underlying the antiangiogenic action of a heat-denatured form, denoted latent antithrombin. Fibroblast growth factor (FGF)-induced angiogenesis in the chick embryo and angiogenesis in mouse fibrosarcoma tumors were inhibited by treatment with latent antithrombin at 1 mg/kg/day. Thermolysin-cleaved and native antithrombin were less efficient in these respects. Treatment with latent antithrombin induced apoptosis of cultured endothelial cells and inhibited cell migration toward FGF-2. Under these conditions, FGF-2-stimulated FGF receptor kinase activity was unaffected. However, actin reorganization, activation of focal adhesion kinase, and focal adhesion formation were disturbed by latent antithrombin treatment of FGF-2-stimulated endothelial cells. These data indicate that latent antithrombin induces apoptosis of endothelial cells by disrupting cell-matrix interactions through uncoupling of focal adhesion kinase.  (+info)

Activation of human prothrombin by highly purified human factors V and X-a in presence of human antithrombin. (68/701)

In this communication we describe the first method for isolating human Factor V. The final product contains no other coagulation components as judged by functional assays and is physically homogeneous as shown by isofocusing gel electrophoresis. In addition, we present a means for obtaining intrinsically activated human Factor X-a. This preparation is usually homogeneous as judged by isofocusing gel electrophoresis. However, on occasion, an additional minor electrophoretic species with Factor X-a activity is observed. Furthermore, we describe the use of isoelectric focusing in sucrose density gradients to free human prothrombin from contamination by coagulation factors and other components. These homogeneous human proteins are employed to examine the conversion of prothrombin to thrombin in the presence and absence of human antithrombin. The latter component is responsible for virtually all of the plasm's capacity to neutralize Factor X-a and thrombin. In the absence of antithrombin, prothrombin (67,800) is converted to the precursor P-2 (51,600) and the fragment F-a (19,500). Subsquently, P-2 is cleaved to form the precursor P-3 (37,000), and the fragment F-b (11,500). Finally, P3 IS proteolyzed to form the heavy chain T-h (29,500) and the light chain T-L (6,500) of active thrombin. In the presence of antithrombin, an additional prothrombin conversion pathway is observed in which the zymogen is directly cleaved to form P-3 and F-A + B (30,000) prior to thrombin generation. Trace amounts of free thrombin remain uninhibited by antithrombin and could bias the zymogen activation pathway. Hirudin is known to neutralized thrombin instantaneoulsly. We demonstrate that the purified leech protein also binds to P-3 and prevents thrombin formation. When hirudin is added to activation mixtures at concentrations sufficient to virtually suppress P-3 conversion to thrombin, molecular species from both activation pathways are observed. Thus two human prothrombin conversion sequences appear to be initiated by Factor X-3 and may be of physiological significance.  (+info)

Hypersulfated low molecular weight heparin with reduced affinity for antithrombin acts as an anticoagulant by inhibiting intrinsic tenase and prothrombinase. (69/701)

In buffer systems, heparin and low molecular weight heparin (LMWH) directly inhibit the intrinsic factor X-activating complex (intrinsic tenase) but have no effect on the prothrombin-activating complex (prothrombinase). Although chemical modification of LMWH, to lower its affinity for antithrombin (LA-LMWH) has no effect on its ability to inhibit intrinsic tenase, N-desulfation of LMWH reduces its activity 12-fold. To further explore the role of sulfation, hypersulfated LA-LMWH was synthesized (sLA-LMWH). sLA-LMWH is not only a 32-fold more potent inhibitor of intrinsic tenase than LA-LMWH; it also acquires prothrombinase inhibitory activity. A direct correlation between the extent of sulfation of LA-LMWH and its inhibitory activity against intrinsic tenase and prothrombinase is observed. In plasma-based assays of tenase and prothrombinase, sLA-LMWH produces similar prolongation of clotting times in plasma depleted of antithrombin and/or heparin cofactor II as it does in control plasma. In contrast, heparin has no effect in antithrombin-depleted plasma. When the effect of sLA-LMWH on various components of tenase and prothrombinase was examined, its inhibitory activity was found to be cofactor-dependent (factors Va and VIIIa) and phospholipid-independent. These studies reveal that sLA-LMWH acts as a potent antithrombin-independent inhibitor of coagulation by attenuating intrinsic tenase and prothrombinase.  (+info)

15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. (70/701)

We previously found (I. Shureiqi et al., Carcinogenesis (Lond.), 20: 1985-1995, 1999; I. Shureiqi et al, J. Natl. Cancer Inst., 92: 1136-1142, 2000) that (a) 15-lipoxygenase-1 (15-LOX-1) protein and its product 13-S-hydroxyoctadecadienoic acid (13-S-HODE) are decreased; and (b) nonsteroidal anti-inflammatory drug (NSAID)-induced 15-LOX-1 expression is critical to NSAID-induced apoptosis in colorectal cancer cells expressing cyclooxygenase-2 (COX-2). We used the NSAIDs sulindac sulfone (COX-2-independent) and NS-398 (a COX-2 inhibitor) to assess NSAID upregulation of 15-LOX-1 in relation to COX-2 inhibition during NSAID-induced apoptosis in the DLD-1 (COX-2-negative) colon cancer cell line. We found that: (a) NSAIDs up-regulated 15-LOX-1, which preceded apoptosis; and (b) 15-LOX-1 inhibition blocked NSAID-induced apoptosis, which was restored by 13-S-HODE but not by its parent, linoleic acid. NSAIDs can induce apoptosis in colon cancer cells via up-regulation of 15-LOX-1 in the absence of COX-2.  (+info)

Risk of recurrent venous thrombosis in children with combined prothrombotic risk factors. (71/701)

After a first episode of spontaneous venous thromboembolism (VTE), the risk of recurrence persists for many years. However, comprehensive data about the risk of recurrence in pediatric patients have hitherto not been reported. Thus, this study evaluated the risk of recurrent VTE among children in relation to the presence of single or combined-inherited and/or acquired causes of thrombophilia. A total of 301 patients aged neonate to 18 years (median, 6 years) who were referred for an objectively confirmed first episode of spontaneous VTE were followed prospectively for a median time of 7 years (range, 6 months to 15 years) after withdrawal of anticoagulation. All patients were studied for established acquired and inherited causes of thromboembolism. With reference to all 301 patients, one single prothrombotic risk factor was found in 176 subjects (58.5%), whereas combined defects were found in 20.6% (n = 62). Recurrent VTE occurred in 64 patients (21.3%) within a median time of 3.5 years (range, 7 weeks to 15 years) after withdrawal of anticoagulation, with a significantly shorter cumulative thrombosis-free survival in children carrying combined defects (P <.0001; chi-square, 42.2). The factor V G1691A mutation was present in the majority of patients with recurrent VTE. Including genetic defects, gender, and acquired risk factors, multivariate analysis showed that only the presence of prothrombotic defects increases the risk of recurrent VTE (single defect: odds ratio [OR], 4.6; 95% confidence interval [CI], 2.3-9.0; P <.0001; combined defect: OR, 24.0; 95% CI: 5.3-108.7; P <.0001). As a consequence of the data presented here, it is suggested that screening for genetic risk factors be done among pediatric patients with VTE.  (+info)

Cell-surface heparan sulfate proteoglycan-mediated regulation of human neutrophil migration by the serpin antithrombin III. (72/701)

The serpin antithrombin III (AT III) is reported to have hemostasis-regulating and anti-inflammatory properties. To determine its ability to influence thrombin-independent leukocyte responses, the direct effects of the AT III concentrate Kybernin P and a monoclonal antibody-purified AT III on neutrophil migration were studied. Chemotactic activity of human neutrophils isolated from the blood of healthy donors was determined in modified Boyden microchemotaxis chambers, and binding studies were performed according to standard experimental protocols. Preincubation in vitro of neutrophils with Kybernin P or immune-adsorbed AT III significantly deactivated migration toward fMet-Leu-Phe, or interleukin-8 (IL-8), in a concentration-dependent manner. In the absence of additional attractants, neutrophils exhibited a migratory response toward gradients of AT III preparations. True chemotaxis was confirmed in checkerboard assays. Analyses revealed that the AT III heparin-binding site interacts with neutrophil membrane-associated heparan sulfate proteoglycan receptors. Mechanisms of intracellular signaling differed; the deactivation of IL-8-induced chemotaxis resulted from tyrphostin-sensitive interactions of AT III-signaling with the IL-8 signal transduction pathway, whereas AT III-induced chemotaxis involved protein kinase C and phosphodiesterases. Signaling similarities between AT III and the proteoglycan syndecan-4 may suggest the binding of AT III to this novel type of membrane receptor. Under physiological conditions, AT III may prevent neutrophils from premature activation. Moreover, the systemic administration of AT III concentrate could have beneficial effects in combating systemic inflammation.  (+info)