Purification and characterization of a protease from Xenopus embryos. (9/34)

A proteolytic enzyme was purified from Xenopus embryos. The purification procedure consisted of fractionation of an extract of embryos with acetone, gel filtration of Sephadex G-75 and chromatography on carboxymethyl-cellulose and hydroxylapatite. The preparation of enzyme appeared to be homogeneous as judged by electrophoresis in polyacrylamide gels. This protease had a molecular mass of 43-44 kDa and was composed of two subunits with molecular masses of 30 kDa and 13 kDa. The optimal pH of the reaction catalysed by the protease was approximately 4.0. This proteolytic activity was inhibited by antipain, leupeptin and iodoacetic acid; it was not affected by phenylmethylsulfonyl fluoride and pepstatin; and it was enhanced by dithiothreitol. In the presence of RNA, the optimal pH was shifted from pH 4.0 to pH 4.5. The protease was activated by addition of total RNA from Xenopus embryos, by poly(rU) or poly(rG). In contrast, after addition of tRNA or poly(rC), no activation of the protease was observed.  (+info)

Inhibition of thrombin-induced platelet activation by leupeptin. Implications for the participation of calpain in the initiation of platelet activation. (10/34)

Inhibitors of calcium-dependent proteases (calpains) such as leupeptin and antipain have been shown to selectively inhibit platelet activation by thrombin. Based upon this observation, it has been proposed that calpains play a role in the initiation of platelet activation. In the present studies, we have examined the effect of leupeptin on the earliest known event in thrombin-induced platelet activation: the interaction between the agonist, its receptors, and the guanine nucleotide-binding proteins which stimulate phospholipase C (Gp) and inhibit adenylyl cyclase (Gi). We found that leupeptin inhibited thrombin's ability to stimulate phosphoinositide hydrolysis, suppress cAMP formation, and dissociate Gp and Gi into subunits. Leupeptin had no effect, however, on the same responses to other agonists or on thrombin binding to platelets. Although these observations might suggest, as others have concluded, that calpain is involved in the initiation of platelet activation by thrombin, we also found that: 1) substituting platelet membranes for intact platelets and decreasing the free Ca2+ concentration below the threshold required for calpain activation did not diminish the effects of leupeptin on phosphoinositide hydrolysis and cAMP formation, 2) washing the platelets after incubation with leupeptin reversed the effects of the inhibitor, 3) permeabilizing the platelets with saponin did not enhance the inhibitory effects of leupeptin, and 4) leupeptin inhibited the proteolysis of fibrinogen and the hydrolysis of S2238 by thrombin. Similar results in these assays were obtained with antipain. Therefore, our observations suggest that the inhibition of platelet activation by leupeptin is due to a direct interaction with thrombin and need not reflect a role for calpain in the initiation of platelet activation.  (+info)

Proteases in cellular slime mold development: evidence for their involvement. (11/34)

Protein degradation appears to be essential for normal differentiation in the cellular slime mold Dictyostelium discoideum. Several protease inhibitors block normal differentiation, and in most cases this inhibition can be reversed by addition of amino acids. For example, chloroquine, which inhibits slime mold cathepsin B activity, interferred with development by blocking sorocarp formation, and this inhibition was reversed by the addition of amino acids. Tosyllysyl chloromethyl ketone also blocked development, and this inhibition was reversed by simultaneous additions of amino acids and glutathione. Moreover, the addition of antipain and leupeptin delayed sorocarp formation. These results, together with the finding reported earlier that cathepsin B activity is differentially localized in the prestalk-prespore zones of the migrating slugs, suggest that proteolysis might play a regulatory role in cellular slime mold differentiation.  (+info)

Inhibition of fibrinogen receptor expression and serotonin release by leupeptin and antipain. (12/34)

Human platelet agonists such as thrombin, ADP, and collagen stimulate the rapid expression of fibrinogen receptors. In other cell types, calcium-activated proteases have been suggested to participate in the mechanism of expression of cell surface receptors (Lynch, G., and Baudry, M. (1984) Science 224, 1057-1063). In platelets the majority of the neutral protease activity is calcium-activated protease. We examined the effects of leupeptin and antipain, two calcium-activated protease inhibitors, on the expression of platelet fibrinogen receptors. These inhibitors abolished thrombin and ADP-induced fibrinogen binding. This inhibition required the addition of leupeptin or antipain prior to the agonist and was not due to displacement of fibrinogen from its receptor or inhibition of agonist binding to platelets. Leupeptin and antipain also inhibited fibrinogen-independent thrombin-stimulated release of serotonin. These results are discussed in relation to the involvement of calcium-activated protease in early events of platelet activation.  (+info)

Inhibition of early but not late proteolytic processing events leads to the missorting and oversecretion of precursor forms of lysosomal enzymes in Dictyostelium discoideum. (13/34)

Lysosomal enzymes are initially synthesized as precursor polypeptides which are proteolytically cleaved to generate mature forms of the enzymatically active protein. The identification of the proteinases involved in this process and their intracellular location will be important initial steps in determining the role of proteolysis in the function and targeting of lysosomal enzymes. Toward this end, axenically growing Dictyostelium discoideum cells were pulse radiolabeled with [35S]methionine and chased in fresh growth medium containing inhibitors of aspartic, metallo, serine, or cysteine proteinases. Cells exposed to the serine/cysteine proteinase inhibitors leupeptin and antipain and the cysteine proteinase inhibitor benzyloxycarbonyl-L-phenylalanyl-L-alanine-diazomethyl ketone (Z-Phe-AlaCHN2) were unable to complete proteolytic processing of the newly synthesized lysosomal enzymes, alpha-mannosidase and beta-glucosidase. Antipain and leupeptin treatment resulted in both a dramatic decrease in the efficiency of proteolytic processing, as well as a sevenfold increase in the secretion of alpha-mannosidase and beta-glucosidase precursors. However, leupeptin and antipain did not stimulate secretion of lysosomally localized mature forms of the enzymes suggesting that these inhibitors prevent the normal sorting of lysosomal enzyme precursors to lysosomes. In contrast to the results observed for cells treated with leupeptin or antipain, Z-Phe-AlaCHN2 did not prevent the cleavage of precursor polypeptides to intermediate forms of the enzymes, but greatly inhibited the production of the mature enzymes. The accumulated intermediate forms of the enzymes, however, were localized to lysosomes. Finally, fractionation of cell extracts on Percoll gradients indicated that the processing of radiolabeled precursor forms of alpha-mannosidase and beta-glucosidase to intermediate products began in cellular compartments intermediate in density between the Golgi complex and mature lysosomes. The generation of the mature forms, in contrast, was completed immediately upon or soon after arrival in lysosomes. Together these results suggest that different proteinases residing in separate intracellular compartments may be involved in generating intermediate and mature forms of lysosomal enzymes in Dictyostelium discoideum, and that the initial cleavage of the precursors may be critical for the proper localization of lysosomal enzymes.  (+info)

Degradation of the precursor of mitochondrial aspartate aminotransferase in chicken embryo fibroblasts. (14/34)

The precursor of mitochondrial aspartate aminotransferase accumulates in the cytosol of cultured chicken embryo fibroblasts if its import into mitochondria is inhibited by an uncoupling agent. However, its accumulation is limited by degradation with a half-life of only approximately 5 min (Jaussi, R., Sonderegger, P., Fluckiger, J., and Christen, P. (1982) J. Biol. Chem. 257, 13334-13340). The aim of the present study was the characterization of the proteolytic system(s) responsible for this very rapid intracellular degradation. On depleting chicken embryo fibroblasts of ATP, the rate of degradation of the precursor was lowered by approximately 70%. Chicken embryo fibroblasts depleted of divalent metal ions showed a degradative activity of 10% of the initial value. Reconstitution of these cells with Mg2+ and Ca2+ increased the degradative activity from 10 to 107 and 24%, respectively. Thiol reagents almost completely prevented the degradation, whereas specific peptide inhibitors of cysteine proteases or inhibitors of intralysosomal proteolysis decreased the rate of degradation by only approximately 30%. Inhibitors of serine proteases had little effect. No rapid degradation of the precursor was observed in crude extracts of chicken embryo fibroblasts. The data indicate that the bulk of the precursor accumulated under conditions of import block is degraded by one or several cytosolic proteases dependent on ATP, Mg2+, and thiol groups of unknown localization, conceivably by proteolytic enzymes identical with or similar to one of the high molecular weight cytosolic proteases (Waxman, L., Fagan, J.M., Tanaka, K., and Goldberg, A. L. (1985) J. Biol. Chem. 260, 11994-12000). The rest of the precursor appears to be degraded by lysosomes.  (+info)

Inhibition of H-ras oncogene transformation of NIH3T3 cells by protease inhibitors. (15/34)

The protease inhibitors antipain, leupeptin, alpha 1-antitrypsin, and epsilon-aminocaproic acid were found to inhibit transformation of NIH3T3 cells after transfection with an activated H-ras oncogene. Inhibition of focus formation by protease inhibitors was concentration dependent and maximal at 50% of control values. Transfection of a gene for neomycin resistance was not affected by protease inhibitors. Antipain was inactive if present only during the first 2 days of the gene transfer protocol or only during the final 10 days of the experiment. However, the full effect was observed when antipain was added at the subculture step on day 3 and during the subsequent cell proliferation. If cells were not subcultured, the yield of the foci per microgram of DNA was sharply reduced and addition of antipain did not further suppress the transformation rate. Subculture of NIH3T3 cells 3 days after transfection at lower cell densities resulted in higher transformation efficiency. The results suggest that transformation of NIH3T3 cells by a single mutated oncogene may involve multiple stages including cell proliferation and that part of this process is susceptible to inhibition by protease inhibitors.  (+info)

Effects of proteinase inhibitors on preimplantation embryos in the rat. (16/34)

Proteinase inhibitors of microbial origin were injected into the uterine horns of mated rats at 14:00 h on Day 5 of pregnancy (spermatozoa in vaginal smear = Day 1), and 5 or 6 h later the embryos were flushed from the horns and examined. Chymostatin and alpha-MAPI, inhibitors of chymotrypsin-like serine proteinase and thiol proteinases, as well as thiolstatin, an inhibitor of thiol proteinases, significantly inhibited embryo growth. The inhibitory activity of alpha-MAPI on embryonic growth was distinctly greater than that of thiolstatin, although the ID50 values of the two inhibitors to papain are similar. Antipain and leupeptin which are inhibitors of trypsin-like and thiol proteinases, and talopeptin, an inhibitor of metal proteinases, significantly interrupted the removal of the zona pellucida from expanding blastocysts. These results suggest that (1) a chymotrypsin-like proteinase seems to be important to the growth of the embryo, (2) a thiol proteinase may participate in embryonic growth, and (3) a trypsin-like proteinase and a metal proteinase are likely to participate in zonalysis.  (+info)