Loading...
(1/13910) Double-blind intervention trial on modulation of ozone effects on pulmonary function by antioxidant supplements.

The aim of this study was to investigate whether the acute effects of ozone on lung function could be modulated by antioxidant vitamin supplementation in a placebo-controlled study. Lung function was measured in Dutch bicyclists (n = 38) before and after each training session on a number of occasions (n = 380) during the summer of 1996. The vitamin group (n = 20) received 100 mg of vitamin E and 500 mg of vitamin C daily for 15 weeks. The average ozone concentration during exercise was 77 microg/m3 (range, 14-186 microg/m3). After exclusion of subjects with insufficient compliance from the analysis, a difference in ozone exposure of 100 microg/m3 decreased forced expiratory volume in 1 second (FEV1) 95 ml (95% confidence interval (CI) -265 to -53) in the placebo group and 1 ml (95% CI -94 to 132) in the vitamin group; for forced vital capacity, the change was -125 ml (95% CI -384 to -36) in the placebo group and -42 ml (95% CI -130 to 35) in the vitamin group. The differences in ozone effect on lung function between the groups were statistically significant. The results suggest that supplementation with the antioxidant vitamins C and E confers partial protection against the acute effects of ozone on FEV1 and forced vital capacity in cyclists.  (+info)

(2/13910) Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells.

We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1x10(5) cells). However, they formed aggressive tumours upon co-implantation with a 'foreign body', i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPchi, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper-zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPchi (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPchi even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells.  (+info)

(3/13910) Synergistic protective effects of antioxidant and nitric oxide synthase inhibitor in transient focal ischemia.

Both nitric oxide synthase (NOS) inhibitors and free radical scavengers have been shown to protect brain tissue in ischemia-reperfusion injury. Nitric oxide and superoxide anion act via distinct mechanisms and react together to form the highly deleterious peroxynitrite. Therefore the authors examined the effects and the interaction between the NOS inhibitor, NG nitro-L-arginine (LNA) and the antioxidant/superoxide scavenger, di-tert-butyl-hydroxybenzoic acid (DtBHB) in the rat submitted to 2 hours of middle cerebral artery occlusion. Posttreatment was initiated 4 hours after the onset of ischemia and infarct volume was measured at 48 hours. The dose-related effect of LNA resulted in a bell-shaped curve: 15, 56, 65, and 33% reduction of total infarct for 0.03, 0.1, 0.3, and 1 mg/kg (intravenously [IV]) respectively and 11% increase in infarct volume for 3 mg/kg (IV). Whereas DtBHB (20 mg/kg; intraperitoneally [IP]) was ineffective, the dose of 60 mg/kg produced 65% protection in infarct volume. The combination of a subthreshold dose of LNA (0.03 mg/kg; IV) and DtBHB (20 mg/kg; IP) resulted in significant reduction (49%) in infarct volume. These results show that LNA and DtBHB act synergistically to provide a consistent neuroprotection against ischemic injury when administered 4 hours after ischemia. This suggests that nitric oxide and free radicals are involved and interact in synergy in ischemia-reperfusion injury.  (+info)

(4/13910) Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants.

Oxidative stress is considered a cause or propagator of acute and chronic disorders of the central nervous system. Novel 2, 4-diamino-pyrrolo[2,3-d]pyrimidines are potent inhibitors of iron-dependent lipid peroxidation, are cytoprotective in cell culture models of oxidative injury, and are neuroprotective in brain injury and ischemia models. The selection of lead candidates from this series required that they reach target cells deep within brain tissue in efficacious amounts after oral dosing. A homologous series of 26 highly lipophilic pyrrolopyrimidines was examined using cultured cell monolayers to understand the structure-permeability relationship and to use this information to predict brain penetration and residence time. Pyrrolopyrimidines were shown to be a more permeable structural class of membrane-interactive antioxidants where transepithelial permeability was inversely related to lipophilicity or to cell partitioning. Pyrrole substitutions influence cell partitioning where bulky hydrophobic groups increased partitioning and decreased permeability and smaller hydrophobic groups and more hydrophilic groups, especially those capable of weak hydrogen bonding, decreased partitioning, and increased permeability. Transmonolayer diffusion for these membrane-interactive antioxidants was limited mostly by desorption from the receiver-side membrane into the buffer. Thus, in this case, these in vitro cell monolayer models do not adequately mimic the in vivo situation by underestimating in vivo bioavailability of highly lipophilic compounds unless acceptors, such as serum proteins, are added to the receiving buffer.  (+info)

(5/13910) Novel, highly lipophilic antioxidants readily diffuse across the blood-brain barrier and access intracellular sites.

In an accompanying article, an in vitro assay for permeability predicts that membrane-protective, antioxidant 2,4-diamino-pyrrolo[2, 3-d]pyrimidines should have improved blood-brain barrier (BBB) permeation over previously described lipophilic antioxidants. Using a first-pass extraction method and brain/plasma quantification, we show here that two of the pyrrolopyrimidines, one of which is markedly less permeable, readily partition into rat brain. The efficiency of extraction was dependent on serum protein binding, and in situ efflux confirms the in vitro data showing that PNU-87663 is retained in brain longer than PNU-89843. By exploiting inherent fluorescence properties of PNU-87663, its distribution within brain and within cells in culture was demonstrated using confocal scanning laser microscopy. PNU-87663 rapidly partitioned into the cell membrane and equilibrates with cytoplasmic compartments via passive diffusion. Although partitioning of PNU-87663 favors intracytoplasmic lipid storage droplets, the compound was readily exchangeable as shown by efflux of compound from cells to buffer when protein was present. The results demonstrated that pyrrolopyrimidines were well suited for quickly accessing target cells within the central nervous system as well as in other target tissues.  (+info)

(6/13910) Mechanisms and mediators in coal dust induced toxicity: a review.

Chronic inhalation of coal dust can cause several lung disorders, including simple coal workers pneumoconiosis (CWP), progressive massive fibrosis (PMF), chronic bronchitis, lung function loss, and emphysema. This review focuses on the cellular actions and interactions of key inflammatory cells and target cells in coal dust toxicity and related lung disorders, i.e. macrophages and neutrophils, epithelial cells, and fibroblasts. Factors released from or affecting these cells are outlined in separate sections, i.e. (1) reactive oxygen species (ROS) and related antioxidant protection mechanisms, and (2) cytokines, growth factors and related proteins. Furthermore, (3) components of the extracellular matrix (ECM), including the modifying role of ROS, cytokines, proteases and antiproteases are discussed in relation to tissue damage and remodelling in the respiratory tract. It is recognised that inhaled coal dust particles are important non-cellular and cellular sources of ROS in the lung, and may be significantly involved in the damage of lung target cells as well as important macromolecules including alpha-1-antitrypsin and DNA. In vitro and in vivo studies with coal dusts showed the up-regulation of important leukocyte recruiting factors, e.g. Leukotriene-B4 (LTB4), Platelet Derived Growth Factor (PDGF), Monocyte Chemotactic Protein-1 (MCP-1), and Tumor Necrosis Factor-alpha (TNF alpha), as well as the neutrophil adhesion factor Intercellular Adhesion Molecule-1 (ICAM-1). Coal dust particles are also known to stimulate the (macrophage) production of various factors with potential capacity to modulate lung cells and/or extracellular matrix, including O2-., H2O2, and NO, fibroblast chemoattractants (e.g. Transforming Growth Factor-beta (TGF beta), PDGF, and fibronectin) and a number of factors that have been shown to stimulate and/or inhibit fibroblast growth or collagen production such as (TNF alpha, TGF beta, PDGF, Insulin Like Growth Factor, and Prostaglandin-E2). Further studies are needed to clarify the in vivo kinetics and relative impact of these factors.  (+info)

(7/13910) Effects of pyrogallol, hydroquinone and duroquinone on responses to nitrergic nerve stimulation and NO in the rat anococcygeus muscle.

1. The hypothesis that endogenous superoxide dismutase (SOD) protects the nitrergic transmitter from inactivation by superoxide and that this explains the lack of sensitivity of the transmitter to superoxide generators was tested in the rat isolated anococcygeus muscle. 2. Responses to nitrergic nerve stimulation or to NO were not significantly affected by exogenous SOD or by the Cu/Zn SOD inhibitor diethyldithiocarbamic acid (DETCA). 3. Hydroquinone produced a concentration-dependent reduction of responses to NO with an IC50 of 27 microM, and higher concentrations reduced relaxant responses to nitrergic nerve stimulation with an IC50 of 612 microM. The effects of hydroquinone were only slightly reversed by SOD, so it does not appear to be acting as a superoxide generator. 4. Pyrogallol produced a concentration-dependent reduction in responses to NO with an IC50 value of 39 microM and this effect was reversed by SOD (100-1000 u ml(-1)). Pyrogallol did not affect responses to nitrergic nerve stimulation. Treatment with DETCA did not alter the differentiating action of pyrogallol. 5. Duroquinone produced a concentration-dependent reduction of relaxations to NO with an IC50 value of 240 microM and 100 microM slightly decreased nitrergic relaxations. After treatment with DETCA, duroquinone produced greater reductions of relaxant responses to NO and to nitrergic stimulation, the IC50 values being 8.5 microM for NO and 40 microM for nitrergic nerve stimulation: these reductions were reversed by SOD. 6. The findings do not support the hypothesis that the presence of Cu/Zn SOD explains the greater susceptibility of NO than the nitrergic transmitter to the superoxide generator pyrogallol, but suggest that it may play a role in the effects of duroquinone.  (+info)

(8/13910) UV-A-induced decrease in nuclear factor-kappaB activity in human keratinocytes.

Previous reports have demonstrated an increase in nuclear factor-kappaB (NF-kappaB) activity in response to UV radiation. These studies have essentially focused on the DNA-damaging fraction of solar UV radiation (UV-B and UV-C). In contrast, the effects of UV-A radiation (320-400 nm) on NF-kappaB are not well known. In this study, we present evidence that UV-A radiation induces a marked decrease in NF-kappaB DNA-binding activity in NCTC 2544 human keratinocytes. In addition, NCTC 2544 keratinocytes pretreated with UV-A fail to respond to NF-kappaB inducers. Moreover, UV-A radiation induces a decrease in NF-kappaB-driven luciferase reporter gene expression in NCTC 2544 keratinocytes. The expression of the gene encoding IkappaBalpha (IkappaB is the NF-kappaB inhibitor), which is closely associated with NF-kappaB activity, is also reduced (3-fold) upon UV-A treatment. Our results indicate that the UV-A-induced decrease in NF-kappaB DNA-binding activity is associated with a decrease in the levels of the p50 and p65 protein subunits. This is the first evidence that an oxidative stress, such as UV-A radiation, may induce a specific decrease in NF-kappaB activity in mammalian cells, probably through degradation of NF-kappaB protein subunits. These findings suggest that UV-A could modulate the NF-kappaB-dependent gene expression.  (+info)