Altered pharmacokinetics of a novel anticancer drug, UCN-01, caused by specific high affinity binding to alpha1-acid glycoprotein in humans. (57/35913)

The large species difference in the pharmacokinetics/pharmacodynamics of 7-hydroxystaurosporine (UCN-01) can be partially explained by the high affinity binding of UCN-01 to human alpha1-acid glycoprotein (AGP) (Fuse et al, Cancer Res., 58: 3248-3253, 1998). To confirm whether its binding to human AGP actually changes the in vivo pharmacokinetics, we have studied the alteration in its pharmacokinetics after simultaneous administration of human AGP to rats: (a) the protein binding of UCN-01 was evaluated by chasing its dissociation from proteins using dextran-coated charcoal. The UCN-01 remaining 0.1 h after adding dextran-coated charcoal to human plasma or AGP was approximately 80%, although the values for other specimens, except monkey plasma (approximately 20%), were <1%, indicating that the dissociation from human AGP was specifically slower than from other proteins; and (b) the pharmacokinetics of UCN-01 simultaneously administered with human AGP has been determined. The plasma concentrations after i.v. administration of UCN-O1 with equimolar human AGP were much higher than those after administration of UCN-01 alone. The steady-state distribution volume and the systemic clearance were reduced to about 1/100 and 1/200, respectively. Human AGP thus reduced the distribution and elimination of UCN-01 substantially. On the other hand, dog AGP, which has a low binding affinity for UCN-01, did not change the pharmacokinetics of UCN-01 so much. Furthermore, human AGP markedly reduced the hepatic extraction ratio of UCN-01 from 0.510 to 0.0326. Also, human AGP (10 microM) completely inhibited the initial uptake of UCN-01 (1 microM) into isolated rat hepatocytes, whereas the uptake of UCN-01 was unchanged in the presence of human serum albumin (10 microM). In conclusion, the high degree of binding of UCN-01 to human AGP causes a reduction in the distribution and clearance, resulting in high plasma concentrations in humans.  (+info)

Rituximab therapy in hematologic malignancy patients with circulating blood tumor cells: association with increased infusion-related side effects and rapid blood tumor clearance. (58/35913)

PURPOSE: Rituximab was recently approved for use in relapsed, low-grade non-Hodgkin's lymphoma; however, few data exist regarding the safety of this agent in patients with a high number of tumor cells in the blood. METHODS AND RESULTS: After the observation at our institution of a rapid reduction of peripheral-blood tumor cells with associated severe pulmonary infusion-related toxicity in two patients with refractory hematologic malignancies, data on three additional cases were collected from physician-submitted reports of adverse events related to rituximab treatment. Five patients with hematologic malignancies possessing a high number of blood tumor cells were treated with rituximab and developed rapid tumor clearance. The median age was 68 years (range, 26 to 78 years). Patients were diagnosed with B-cell prolymphocytic leukemia (n = 2), chronic lymphocytic leukemia (n = 2), or transformed non-Hodgkin's lymphoma (n = 1). All of these patients had bulky adenopathy or organomegaly. All five patients developed a unique syndrome of severe infusion-related reactions, thrombocytopenia, rapid decrement in circulating tumor cell load, and mild electrolyte evidence of tumor lysis, and all required hospitalization. In addition, one patient developed ascites. These events resolved, and four patients were subsequently treated with rituximab without significant complications. CONCLUSION: Rituximab administration in patients who have a high number of tumor cells in the blood may have an increased likelihood of severe initial infusion-related reactions. These data also suggest that rituximab may have activity in a variety of other lymphoid neoplasms, such as chronic lymphocytic leukemia and B-cell prolymphocytic leukemia.  (+info)

Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. (59/35913)

PURPOSE: To assess whether pamidronate can reduce the frequency of skeletal morbidity in women with lytic bone metastases from breast cancer treated with hormone therapy. PATIENTS AND METHODS: Three hundred seventy-two women with breast cancer who had at least one lytic bone lesion and who were receiving hormonal therapy were randomized to receive 90 mg of pamidronate or placebo as a 2-hour intravenous infusion given in double-blind fashion every 4 weeks for 24 cycles. Patients were evaluated for skeletal complications: pathologic fractures, spinal cord compression, irradiation of or surgery on bone, or hypercalcemia. The skeletal morbidity rate (the ratio of the number of skeletal complications to the time on trial) was the primary efficacy variable. Bone pain, use of analgesics, quality of life, performance status, bone tumor response, and biochemical parameters were also evaluated. RESULTS: One hundred eighty-two patients who received pamidronate and 189 who received placebo were assessable. The skeletal morbidity rate was significantly reduced at 12, 18, and 24 cycles in patients treated with 90 mg of pamidronate (P = .028, .023, and .008, respectively). At 24 cycles, the proportion of patients having had any skeletal complication was 56% in the pamidronate group and 67% in the placebo group (P = .027). The time to the first skeletal complication was longer for patients receiving pamidronate than for those given placebo (P = .049). There was no statistical difference in survival or in objective bone response rate. Pamidronate was well tolerated. CONCLUSION: Treatment with 90 mg of pamidronate as a 2-hour intravenous infusion every 4 weeks in addition to hormonal therapy significantly reduces skeletal morbidity from osteolytic metastases.  (+info)

Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. (60/35913)

PURPOSE: To determine the response rate, time to treatment failure, and toxicity of phenylacetate in patients with recurrent malignant glioma and to identify plasma concentrations achieved during repeated continuous infusion of this agent. PATIENTS AND METHODS: Adult patients with recurrent malignant glioma were treated with phenylacetate. The schedule consisted of a 2-week continuous, intravenous infusion followed by a 2-week rest period (14 days on, 14 days off). A starting dose of 400 mg/kg total body weight per day of phenylacetate was initially used and subsequently changed to 400 mg/kg/d based on ideal body weight. Intrapatient dose escalations were allowed to a maximum of 450 mg/kg ideal body weight/d. Tumor response was assessed every 8 weeks. The National Cancer Institute common toxicity criteria were used to assess toxicity. Plasma concentrations achieved during the patients' first two 14-day infusions were assessed. RESULTS: Forty-three patients were enrolled between December 1994 and December 1996. Of these, 40 patients were assessable for toxicity and response to therapy. Reversible symptoms of fatigue and somnolence were the primary toxicities, with only mild hematologic toxicity. Thirty (75%) of the 40 patients failed treatment within 2 months, seven (17.5%) had stable disease, and three (7.5%) had a response defined as more than 50% reduction in the tumor. Median time to treatment failure was 2 months. Thirty-five patients have died, with a median survival of 8 months. Pharmacokinetic data for this dose schedule showed no difference in the mean plasma concentrations of phenylacetate between weeks 1 and 2 or between weeks 5 and 6. CONCLUSION: Phenylacetate has little activity at this dose schedule in patients with recurrent malignant glioma. Further studies with this drug would necessitate an evaluation of a different dose schedule.  (+info)

Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. (61/35913)

PURPOSE: To analyze the available data concerning mechanisms of action of and mechanisms of resistance to the antitubulin agents, vinca alkaloids and taxanes, and more recently described compounds. DESIGN: We conducted a review of the literature on classic and recent antitubulin agents, focusing particularly on the relationships between antitubulin agents and their intracellular target, the soluble tubulin/microtubule complex. RESULTS AND CONCLUSION: Although it is widely accepted that antitubulin agents block cell division by inhibition of the mitotic spindle, the mechanism of action of antitubulin agents on microtubules remains to be determined. The classic approach is that vinca alkaloids depolymerize microtubules, thereby increasing the soluble tubulin pool, whereas taxanes stabilize microtubules and increase the microtubular mass. More recent data suggest that both classes of agents have a similar mechanism of action, involving the inhibition of microtubule dynamics. These data suggest that vinca alkaloids and taxanes may act synergistically as antitumor agents and may be administered as combination chemotherapy in the clinic. However, enhanced myeloid and neurologic toxicity, as well as a strong dependence on the sequence of administration, presently exclude these combinations outside the context of clinical trials. Although the multidrug resistance phenotype mediated by Pgp appears to be an important mechanism of resistance to these agents, alterations of microtubule structure resulting in altered microtubule dynamics and/or altered binding of antitubulin agents may constitute a significant mechanism of drug resistance.  (+info)

RAS and leukemia: from basic mechanisms to gene-directed therapy. (62/35913)

PURPOSE AND DESIGN: The purpose of this review is to provide an overview of the literature linking Ras signaling pathways and leukemia and to discuss the biologic and potential therapeutic implications of these observations. A search of MEDLINE from 1966 to October 1998 was performed. RESULTS: A wealth of data has been published on the role of Ras pathways in cancer. To be biologically active, Ras must move from the cytoplasm to the plasma membrane. Importantly, a posttranslational modification--addition of a farnesyl group to the Ras C-terminal cysteine--is a requisite for membrane localization of Ras. Farnesylation of Ras is catalyzed by an enzyme that is designated farnesyltransferase. Recently, several compounds have been developed that can inhibit farnesylation. Preclinical studies indicate that these molecules can suppress transformation and tumor growth in vitro and in animal models, with little toxicity to normal cells. CONCLUSION: An increasing body of data suggests that disruption of Ras signaling pathways, either directly through mutations or indirectly through other genetic aberrations, is important in the pathogenesis of a wide variety of cancers. Molecules such as farnesyl transferase inhibitors that interfere with the function of Ras may be exploitable in leukemia (as well as in solid tumors) as novel antitumor agents.  (+info)

Several new targets of antitumor agents. (63/35913)

Alpha-fetoprotein (AFP), as a hepatoma-promoting factor, has become a new target of anti-hepatoma agents. It is a new approach for the treatment of tumors to inhibit or block oncogene expression. Informational drugs are being developed for gene therapy applications as inhibitors of oncogene expression. The induction of tumor cell differentiation is another new strategy of drug therapy of tumors. Common action mode of many antitumor drugs is to induce apoptosis of tumor cells. Suicide genes, as targeting therapy of tumors, improve the present chemotherapy, exhibiting broad application prospects.  (+info)

alpha-Anordrin-induced apoptosis of leukemia K562 cells is not prevented by cicloheximide. (64/35913)

AIM: To study effect of protein synthesis inhibitor cicloheximide (Cic) on the apoptosis induced by alpha-anordrin (Ano) in leukemia K562 cells. METHODS: Morphological changes were observed by fluorescent microscopy. DNA content was measured by flow cytometry. DNA fragmentation was analyzed by agarose gel electrophoresis. RESULTS: Exposure of K562 cells to Ano 50 mumol.L-1 for 24 h induced apoptotic cell death. Cic 1 mumol.L-1 did not abrogate or delay this effect. Indeed, Ano-induced apoptosis was augmented by Cic. Cic 100 mumol.L-1 itself stimulated 25% K562 cell apoptosis after 24-h culture. CONCLUSION: Ano-induced apoptosis was independent of de novo protein synthesis.  (+info)