Nonhealing skin lesions in a sailor and a journalist returning from Iraq. (65/319)

US health care providers who are not familiar with cutaneous leishmaniasis may now begin to encounter more patients with this challenging entity as military personnel return from rotations in Iraq or Afghanistan. Diagnosis requires a skin scraping, aspiration, or biopsy, followed by examination by an experienced microscopist or pathologist. Demonstration of the parasite DNA by PCR or culture in special media can also be used to confirm the diagnosis. Sodium stibogluconate is the mainstay of therapy, but other options for selected cases include topical thermal or cryotherapy treatment and oral triazole compounds. Assistance is available through the CDC and, for Department of Defense beneficiaries, certain military facilities.  (+info)

Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. (66/319)

Antimonial compounds are the mainstay for the treatment of infections with the protozoan parasite Leishmania. We present our studies on Leishmania infantum amastigote parasites selected for resistance to potassium antimonyl tartrate [Sb(III)]. Inside macrophages, the Sb(III)-selected cells are cross-resistant to sodium stibogluconate (Pentostam), the main drug used against Leishmania. Putative alterations in the level of expression of more than 40 genes were compared between susceptible and resistant axenic amastigotes using customized DNA microarrays. The expression of three genes coding for the ABC transporter MRPA (PGPA), S-adenosylhomocysteine hydrolase, and folylpolyglutamate synthase was found to be consistently increased. The levels of cysteine were found to be increased in the mutant. Transfection of the MRPA gene was shown to confer sodium stibogluconate resistance in intracellular parasites. This MRPA-mediated resistance could be reverted by using the glutathione biosynthesis-specific inhibitor buthionine sulfoximine. These results highlight for the first time the role of MRPA in antimony resistance in the amastigote stage of the parasite and suggest a strategy for reversing resistance.  (+info)

Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. (67/319)

The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-gamma, TNF-alpha, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis.  (+info)

Successful treatment of refractory cutaneous leishmaniasis with GM-CSF and antimonials. (68/319)

Therapeutic failure in the treatment of cutaneous leishmaniasis (CL) occurs in 5% of patients infected by Leishmania braziliensis. This study evaluates the use of topically applied granulocyte macrophage colony-stimulating factor (GM-CSF) combined with the standard dose of antimony to treat refractory cases of CL. Five patients who had received three courses or more of antimony were enrolled in an open-label clinical trial. One to 2 mL of the GM-CSF solution (10 mug/mL in 0.9% saline) was reapplied topically, and dressings were changed three times per week for 3 weeks, associated with standard parenteral antimony (20 mg kg(-1) day(-1) for 20 days). All the patients healed their CL ulcers; 3 healed within 50 days (21, 27, and 44 days) and 2 in 118 and 120 days after beginning therapy. There were no side effects. This study shows that combined topically applied GM-CSF and antimony can be effective and well tolerated in the treatment of relapsed CL.  (+info)

Control of mucocutaneous leishmaniasis, a neglected disease: results of a control programme in Satipo Province, Peru. (69/319)

Mucocutaneous leishmaniasis (MCL) is an important health problem in many rural areas of Latin America, but there are few data on the results of programmatic approaches to control the disease. We report the results of a control programme in San Martin de Pangoa District, which reports one of the highest prevalences of MCL in Peru. For 2 years (2001--2002), the technicians at the health post were trained in patient case management, received medical support and were supplied with antimonials. An evaluation after 2 years showed the following main achievements: better diagnosis of patients, who were confirmed by microscopy in 34% (82/240) of the cases in 2001 and 60% of the cases (153/254) in 2002; improved follow-up during treatment: 237 of 263 (90%) patients who initiated an antimonial therapy ended the full treatment course; improved follow-up after treatment: 143 of 237 (60%) patients who ended their full treatment were correctly monitored during the required period of 6 (cutaneous cases) or 12 (mucosal cases) months after the end of treatment. These achievements were largely due to the human and logistical resources made available, the constant availability of medications and the close collaboration between the Ministry of Health, a national research institute and an international non-governmental organization. At the end of this period, the health authorities decided to register a generic brand of sodium stibogluconate, which is now in use. This should allow the treatment of a significant number of additional patients, while saving money to invest in other facets of the case management.  (+info)

Inhibition of hepatitis C virus replication by antimonial compounds. (70/319)

Chronic hepatitis C virus (HCV) infection is a worldwide health problem causing serious complications, such as liver cirrhosis and hepatoma. Alpha interferon (IFN-alpha) or its polyethylene glycol-modified form combined with ribavirin is the only recommended therapy. However, an alternative therapy is needed due to the unsatisfactory cure rate of the IFN-based therapy. Using a modified reporter assay based on the HCV subgenomic-replicon system, we found that sodium stibogluconate (SSG), a compound used for leishmania treatment, suppressed HCV replication. We have previously reported that SSG is effective at inhibiting HCV replication in a cell line permissive for HCV infection/replication and in an ex vivo assay using fresh human liver slices obtained from patients infected with HCV (26). In this study, we show that the SSG 50% inhibitory dose for HCV replication is 0.2 to 0.3 mg/ml (equivalent to 345 to 517 microM of Sb) in the HCV subgenomic-replicon system. We also found that SSG and IFN-alpha exert a strong synergistic anti-HCV effect in both the traditional isobologram analysis and the median effect principle (CalcuSyn analysis). The combination of SSG and IFN-alpha could sustain the antiviral response better than SSG or IFN-alpha alone. The results suggest that SSG may be a good drug candidate for use in combination with other therapeutics, such as IFN-alpha and ribavirin, to treat HCV infection.  (+info)

Microwave-assisted cross-coupling reaction of alkynylstibanes with aryl iodides in the presence of ammonium salt. (71/319)

The scope of microwave-assisted coupling reaction of alkynylstibane and aryl iodides to form diarylalkynes is presented. Highly efficient reaction took place smoothly in dimethyl sulfoxide in the presence of cetyltrimethylammonium bromide with much shorter time (1 min) and lower catalyst loading (0.5 mol%) than the conventional method (heating for 24 h with 10 mol% catalyst).  (+info)

Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. (72/319)

Control of visceral leishmaniasis (VL) is being challenged by the emergence of natural resistance against the first line of treatment, pentavalent antimonials [Sb(V)]. An insight into the mechanism of natural Sb(V) resistance is required for the development of efficient strategies to monitor the emergence and spreading of Sb(V) resistance in countries where VL is endemic. In this work, we have focused on the mechanism of natural Sb(V) resistance emerging in Nepal, a site where anthroponotic VL is endemic. Based on the current knowledge of Sb(V) metabolism and of the in vitro trivalent antimonial [Sb(III)] models of resistance to Leishmania spp., we selected nine genes for a comparative transcriptomic study on natural Sb(V)-resistant and -sensitive Leishmania donovani isolates. Differential gene expression patterns were observed for the genes coding for 2-thiol biosynthetic enzymes, gamma-glutamylcysteine synthetase (GCS) and ornithine decarboxylase (ODC), and for the Sb(III) transport protein aquaglyceroporin 1 (AQP1). The results indicate that the mechanism for natural Sb(V) resistance partially differs from the mechanism reported for in vitro Sb(III) resistance. More specifically, we hypothesize that natural Sb(V) resistance results from (i) a changed thiol metabolism, possibly resulting in inhibition of Sb(V) activation in amastigotes, and (ii) decreased uptake of the active drug Sb(III) by amastigotes.  (+info)