Emi1 class of proteins regulate entry into meiosis and the meiosis I to meiosis II transition in Xenopus oocytes. (1/74)

Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified Delta90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of nondestructible Delta90 cyclin B rescues the MI-MII transition in Emi1-inhibited oocytes.  (+info)

Rapamycin inhibits human in stent restenosis vascular smooth muscle cells independently of pRB phosphorylation and p53. (2/74)

OBJECTIVE: Drug-eluting stents containing the immunosuppressant rapamycin markedly inhibit in stent restenosis (ISR). However, the molecular mechanisms that underlie its effect on ISR-derived vascular smooth muscle cells (VSMCs), as opposed to normal VSMCs, are unknown. Specifically, as ISR-VSMCs have altered cell cycle regulation, rapamycin may arrest these cells via novel molecular pathways. METHODS: We isolated human VSMCs from sites of ISR, and examined the effect of rapamycin on cell proliferation using MTT assay, time lapse videomicroscopy and flow cytometry. Regulation of G(1)-S transition was examined using Western blotting, and cell size and protein synthesis examined using flow cytometry and collagen assay, respectively. The requirement for pRB and p53 was examined using ISR VSMCs expressing E1A and a dominant negative p53, respectively. RESULTS: ISR-VSMC proliferation was potently inhibited by rapamycin. Arrest was confined to G(1), as cell proliferation (but not cell size) of S/G(2)-arrested cells was unaffected by rapamycin. Moreover, ISR-VSMC lines generated with disrupted p53 or pRB function still arrested in the presence of rapamycin, suggesting that these genes are dispensable for rapamycin-induced arrest. Significantly, rapamycin completely inhibited the phosphorylation of p70(S6K), an mTOR-regulated kinase implicated in the control of proliferation, but had no effect on collagen or total protein synthesis. CONCLUSIONS: We demonstrate that rapamycin is a potent inhibitor of ISR VSMC proliferation during G(1). Rapamycin's action does not require p53 or pRB. We show that p70(S6K) is markedly inhibited in rapamycin-arrested ISR cells, suggesting that regulation of its upstream kinase, mTOR, is important for the control of proliferation in ISR cells.  (+info)

The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. (3/74)

E7389, which is in phase I and II clinical trials, is a synthetic macrocyclic ketone analogue of the marine sponge natural product halichondrin B. Whereas its mechanism of action has not been fully elucidated, its main target seems to be tubulin and/or the microtubules responsible for the construction and proper function of the mitotic spindle. Like most microtubule-targeted antitumor drugs, it inhibits tumor cell proliferation in association with G(2)-M arrest. It binds to tubulin and inhibits microtubule polymerization. We examined the mechanism of action of E7389 with purified microtubules and in living cells and found that, unlike antimitotic drugs including vinblastine and paclitaxel that suppress both the shortening and growth phases of microtubule dynamic instability, E7389 seems to work by an end-poisoning mechanism that results predominantly in inhibition of microtubule growth, but not shortening, in association with sequestration of tubulin into aggregates. In living MCF7 cells at the concentration that half-maximally blocked cell proliferation and mitosis (1 nmol/L), E7389 did not affect the shortening events of microtubule dynamic instability nor the catastrophe or rescue frequencies, but it significantly suppressed the rate and extent of microtubule growth. Vinblastine, but not E7389, inhibited the dilution-induced microtubule disassembly rate. The results suggest that, at its lowest effective concentrations, E7389 may suppress mitosis by directly binding to microtubule ends as unliganded E7389 or by competition of E7389-induced tubulin aggregates with unliganded soluble tubulin for addition to growing microtubule ends. The result is formation of abnormal mitotic spindles that cannot pass the metaphase/anaphase checkpoint.  (+info)

The mitotic checkpoint in cancer therapy. (4/74)

The mitotic checkpoint is a key cell cycle control mechanism that ensures an accurate segregation of chromosomes during mitosis by delaying the onset of anaphase until all chromosomes are properly attached to a bipolar mitotic spindle. While complete loss of this checkpoint is lethal in vertebrates, a weakened mitotic checkpoint is frequently seen in cancer cells and it may contribute to tumorigenesis. Many anti-tumor drugs, including spindle assembly inhibitors and DNA damaging agents, can activate the mitotic checkpoint. However, since these drugs influence interphase events besides activating the mitotic checkpoint, the role of the mitotic checkpoint in drug-induced cell death remained unclear. Using a KSP antagonist that specifically acts on mitotic cells, we have recently shown that activation of the mitotic checkpoint followed by mitotic slippage or adaptation, activates Bax and initiates apoptosis. Notably, cells with a weakened mitotic checkpoint incur much less apoptotic death than their checkpoint-proficient counterparts, indicating the requirement of a competent mitotic checkpoint in the induction of apoptosis. In light of these findings and other recent reports, the potential influence of the mitotic checkpoint in response to chemotherapies, and the strategy to target the mitotic checkpoint for cancer therapeutics are discussed.  (+info)

Sichuan pepper extracts block the PAK1/cyclin D1 pathway and the growth of NF1-deficient cancer xenograft in mice. (5/74)

There is increasing evidence that more than 70% of cancers including pancreatic, breast and prostate cancers as well as neurofibromatosis (NF) are highly addicted to abnormal activation of the Ser/Thr kinase PAK1 for their growth. So far FK228 is the most potent among the HDAC (histone deacetylase) inhibitors that block the activation of both PAK1 and another kinase AKT, downstream of PI-3 kinase. However, FK228 is still in clinical trials (phase 2) for a variety of cancers (but not for NF as yet), and not available for most cancer/NF patients. Thus, we have been exploring an alternative which is already in the market, and therefore immediately useful for the treatment of those desperate cancer/NF patients. Here we provide the first evidence that extracts of Chinese/ Japanese peppercorns (Zanthoxyli Fructus) from the plant Zanthoxylum piperitum called "Hua Jiao"/"Sansho", block selectively the key kinase PAK1, leading to the downregulation of cyclin D1. Unlike FK228, these extracts do not inhibit AKT activation at the concentrations that block either cancer growth or PAK1 activation. The Chinese pepper extract selectively inhibits the growth of NF1-deficient malignant peripheral nerve sheath tumor (MPNST) cells, without affecting the growth of normal fibroblasts, and suppresses the growth of NF1-deficient human breast cancer (MDA-MB-231) xenograft in mice. Our data suggest that these peppercorn extracts would be potentially useful for the treatment of PAK1-dependent NF such as MPNST, in addition to a variety of PAK1-dependent cancers including breast cancers.  (+info)

Increased therapeutic potential of an experimental anti-mitotic inhibitor SB715992 by genistein in PC-3 human prostate cancer cell line. (6/74)

BACKGROUND: Kinesin spindle proteins (KSP) are motor proteins that play an essential role in mitotic spindle formation. HsEg5, a KSP, is responsible for the formation of the bipolar spindle, which is critical for proper cell division during mitosis. The function of HsEg5 provides a novel target for the manipulation of the cell cycle and the induction of apoptosis. SB715992, an experimental KSP inhibitor, has been shown to perturb bipolar spindle formation, thus making it an excellent candidate for anti-cancer agent. Our major objective was a) to investigate the cell growth inhibitory effects of SB715992 on PC-3 human prostate cancer cell line, b) to investigate whether the growth inhibitory effects of SB715992 could be enhanced when combined with genistein, a naturally occurring isoflavone and, c) to determine gene expression profile to establish molecular mechanism of action of SB715992. METHODS: PC-3 cells were treated with varying concentration of SB715992, 30 microM of genistein, and SB715992 plus 30 microM of genistein. After treatments, PC-3 cells were assayed for cell proliferation, induction of apoptosis, and alteration in gene and protein expression using cell inhibition assay, apoptosis assay, microarray analysis, real-time RT-PCR, and Western Blot analysis. RESULTS: SB715992 inhibited cell proliferation and induced apoptosis in PC-3 cells. SB715992 was found to regulate the expression of genes related to the control of cell proliferation, cell cycle, cell signaling pathways, and apoptosis. In addition, our results showed that combination treatment with SB715992 and genistein caused significantly greater cell growth inhibition and induction of apoptosis compared to the effects of either agent alone. CONCLUSION: Our results clearly show that SB715992 is a potent anti-tumor agent whose therapeutic effects could be enhanced by genistein. Hence, we believe that SB715992 could be a novel agent for the treatment of prostate cancer with greater success when combined with a non-toxic natural agent like genistein.  (+info)

Preplaced cell division: a critical mechanism of autoprotection against S-1,2-dichlorovinyl-L-cysteine-induced acute renal failure and death in mice. (7/74)

Previous studies have shown that renal injury initiated by a lethal dose of S-1,2-dichlorovinyl-l-cysteine (DCVC) progresses due to inhibition of cell division and hence renal repair, leading to acute renal failure (ARF) and death in mice. Renal injury initiated by low to moderate doses of DCVC is repaired by timely and adequate stimulation of renal cell division, tubular repair, restoration of renal structure and function leading to survival of mice. Recent studies have established that mice primed with a low dose of DCVC (15 mg/kg i.p.) 72 h before administration of a normally lethal dose (75 mg/kg i.p.) are protected from ARF and death (nephro-autoprotection). We showed that renal cell division and tissue repair stimulated by the low dose are sustained even after the lethal dose administration resulting in survival from ARF and death. If renal cell division induced by the low dose is indeed the critical mechanism of this autoprotection, then its ablation by the antimitotic agent colchicine (1.5 mg CLC/kg i.p.) should abolish autoprotection. The present interventional experiments were designed to test the hypothesis that DCVC autoprotection is due to stimulated cell division and tissue repair by the priming low dose. CLC intervention at 42 and 66 h after the priming dose resulted in marked progressive elevation of plasma blood urea nitrogen and creatinine resulting in ARF and death of mice. Light microscopic examination of hematoxylin and eosin-stained kidney sections revealed progression of renal necrosis concordant with progressively failing renal function. With CLC intervention, S-phase stimulation (as assessed by BrdU pulse labeling), G(1)-to-S phase clearance, and cell division were diminished essentially abolishing the promitogenic effect of the priming low dose of DCVC. Phospho-retinoblastoma protein (P-pRB), a crucial protein for S-phase stimulation, and other cellular signaling mechanisms regulating P-pRB were investigated. We report that decreased P-pRB via activation of protein phosphatase-1 by CLC is the critical mechanism of this inhibited S-phase stimulation and ablation of autoprotection with CLC intervention. These findings lend additional support to the notion that stimulated cell division and renal tissue repair by the priming dose of DCVC are the critical mechanisms that allow sustained compensatory tissue repair and survival of mice in nephro-autoprotection.  (+info)

A thalidomide analogue with in vitro antiproliferative, antimitotic, and microtubule-stabilizing activities. (8/74)

We discovered a thalidomide analogue [5-hydroxy-(2,6-diisopropylphenyl)-1H-isoindole-1,3-dione (5HPP-33)] with antiproliferative activity against nine cancer cell lines in vitro. Flow cytometric analyses showed that the compound caused G2-M arrest, which occurred mainly at the mitotic phase. In addition, immunofluorescence microscopy and in vitro tubulin polymerization studies showed that 5HPP-33 has antimicrotubule activity with a paclitaxel-like mode of action. It is effective against four different paclitaxel-resistant cell lines. Thus, 5HPP-33 represents a potential antitumor agent.  (+info)