Loading...
(1/3345) Is early post-operative treatment with 5-fluorouracil possible without affecting anastomotic strength in the intestine?

Early post-operative local or systemic administration of 5-fluorouracil (5-FU) is under investigation as a means to improve outcome after resection of intestinal malignancies. It is therefore quite important to delineate accurately its potentially negative effects on anastomotic repair. Five groups (n = 24) of rats underwent resection and anastomosis of both ileum and colon: a control group and four experimental groups receiving daily 5-FU, starting immediately after operation or after 1, 2 or 3 days. Within each group, the drug (or saline) was delivered either intraperitoneally (n = 12) or intravenously (n = 12). Animals were killed 7 days after operation and healing was assessed by measurement of anastomotic bursting pressure, breaking strength and hydroxyproline content. In all cases, 5-FU treatment from the day of operation or from day 1 significantly (P<0.025) and severely suppressed wound strength; concomitantly, the anastomotic hydroxyproline content was reduced. Depending on the location of the anastomosis and the route of 5-FU administration, even a period of 3 days between operation and first dosage seemed insufficient to prevent weakening of the anastomosis. The effects of intravenous administration, though qualitatively similar, were quantitatively less dramatic than those observed after intraperitoneal delivery. Post-operative treatment with 5-FU, if started within the first 3 days after operation, is detrimental to anastomotic strength and may compromise anastomotic integrity.  (+info)

(2/3345) Profound variation in dihydropyrimidine dehydrogenase activity in human blood cells: major implications for the detection of partly deficient patients.

Dihydropyrimidine dehydrogenase (DPD) is responsible for the breakdown of the widely used antineoplastic agent 5-fluorouracil (5FU), thereby limiting the efficacy of the therapy. To identify patients suffering from a complete or partial DPD deficiency, the activity of DPD is usually determined in peripheral blood mononuclear cells (PBM cells). In this study, we demonstrated that the highest activity of DPD was found in monocytes followed by that of lymphocytes, granulocytes and platelets, whereas no significant activity of DPD could be detected in erythrocytes. The activity of DPD in PBM cells proved to be intermediate compared with the DPD activity observed in monocytes and lymphocytes. The mean percentage of monocytes in the PBM cells obtained from cancer patients proved to be significantly higher than that observed in PBM cells obtained from healthy volunteers. Moreover, a profound positive correlation was observed between the DPD activity of PBM cells and the percentage of monocytes, thus introducing a large inter- and intrapatient variability in the activity of DPD and hindering the detection of patients with a partial DPD deficiency.  (+info)

(3/3345) Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity.

Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme of 5-fluorouracil (5-FU) catabolism. We report lymphocytic DPD data concerning a group of 53 patients (23 men, 30 women, mean age 58, range 36-73), treated by 5-FU-based chemotherapy in different French institutions and who developed unanticipated 5-FU-related toxicity. Lymphocyte samples (standard collection procedure) were sent to us for DPD determination (biochemical method). Among the whole group of 53 patients, 19 had a significant DPD deficiency (DD; below 150 fmol min(-1) mg(-1) protein, i.e. less than 70% of the mean value observed from previous population study). There was a greater majority of women in the DD group (15 out of 19, 79%) compared with the remaining 34 patients (15 out of 34, 44%, P<0.014). Toxicity was often severe, leading to patient death in two cases (both women). The toxicity score (sum of WHO grading, theoretical range 0-20) was twice as high in patients with marked DD (below 100 pmol min(-1) mg(-1) protein, n = 11, mean score = 13.2) compared with patients with moderate DD (between 150 and 100 pmol min(-1) mg(-1) protein, n = 8, mean score = 6.8), P = 0.008. In the DD group, there was a high frequency of neurotoxic syndromes (7 out of 19, 37%). The two deceased patients both had severe neurotoxicity. The occurrence of cardiac toxicity was relatively rare (1 out of 19, 5%). These data suggest that women are particularly prone to DPD deficiency and allow a more precise definition of the DD toxicity profile.  (+info)

(4/3345) [3H]gemcitabine uptake by nucleoside transporters in a human head and neck squamous carcinoma cell line.

Cellular uptake of many chemotherapeutic nucleoside analogs is dependent on the activity of a family of nucleoside transport proteins located in the cell plasma membrane. In the present study, we examined the role of these transporters in the accumulation of gemcitabine by a human head and neck squamous carcinoma cell line. The uptake of [3H]gemcitibine was compared with that of [3H]uridine and [3H]formycin B in the parent cell line (HN-5a) and in a gemcitabine-resistant variant (GEM-8e). The HN-5a and GEM-8e cells were similar in their transport characteristics and expressed predominantly the es (equilibrative, inhibitor-sensitive) transporter subtype; less than 10% of the influx of [3H]formycin B or [3H]uridine was mediated by the ei (equilibrative inhibitor-resistant) system, and there was no evidence for Na+-dependent nucleoside transporters. [3H]Gemcitabine (10 microM) entered these cells via both the es and ei transporters with an initial rate of uptake similar to that seen with the use of [3H]formycin B or [3H]uridine. In addition, ATP-replete cells accumulated significantly less [3H]gemcitabine than did ATP-depleted cells, which is indicative of an active efflux mechanism for gemcitabine. These results show that gemcitabine is a substrate for both the es and ei nucleoside transporters of HN-5a and GEM-8e cells and that gemcitabine resistance of the GEM-8e cells cannot be attributed to changes in transporter activity. Further studies to define the characteristics of the putative efflux mechanism are clearly warranted because this system has the potential to significantly affect the clinical efficacy of gemcitabine.  (+info)

(5/3345) Modulation of the cytotoxicity of 3'-azido-3'-deoxythymidine and methotrexate after transduction of folate receptor cDNA into human cervical carcinoma: identification of a correlation between folate receptor expression and thymidine kinase activity.

Cervical carcinoma is an AIDS-defining illness. The expression of folate receptors (FRs) in cervical carcinoma (HeLa-IU1) cells was modulated by stable transduction of FR cDNA encapsidated in recombinant adeno-associated virus-2 in the sense and antisense orientation (sense and antisense cells, respectively). Although sense cells proliferated slower than antisense or untransduced cells in vivo and in vitro in 2% (but not 10%) FCS, [methyl-3H]thymidine incorporation into DNA was significantly increased in sense cells in 10% serum; therefore, the basis for this discrepancy was investigated. The activity of thymidine kinase (TK) was subsequently directly correlated with the extent of FR expression in single cell-derived clones of transduced cells. This elevated TK activity was not a result of recruitment of the salvage pathway based on the presence of adequate dTTP pools, normal thymidylate synthase (TS) activity, persistence of increased thymidine incorporation despite the exogenous provision of excess 5,10-methylene-tetrahydrofolate, and documentation of adequate folates in sense cells. The increase in TK activity conferred significant biological properties to sense cells (but not antisense or untransduced cells) as demonstrated by augmented phosphorylation of 3'-azido-3'-deoxythymidine (AZT) and concomitantly greater sensitivity to the cytotoxic effects of AZT. Conversely, sense cells were highly resistant to methotrexate, but this was reversed by the addition of AZT. The direct correlation of FR expression and TK activity indicates a previously unrecognized consequence of FR overexpression.  (+info)

(6/3345) Role of folylpolyglutamate synthetase and folylpolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia.

Inefficient polyglutamylation is a mechanism of resistance to methotrexate (MTX) in childhood T-lineage acute lymphoblastic leukemia (T-ALL) and in acute myeloid leukemia (AML) in comparison with childhood c/preB-ALL. We analyzed the profile of MTX polyglutamylation in childhood c/preB-ALL, T-ALL, and AML (n = 45, 15, and 14, respectively), the activity of the MTX-polyglutamate synthesizing enzyme folylpolyglutamate synthetase (FPGS) (n = 39, 11, and 19, respectively) and of the MTX-polyglutamate breakdown enzyme folylpolyglutamate hydrolase (FPGH) (n = 98, 25, and 34, respectively). MTX-Glu4-6 accumulation after 24 hours exposure to 1 micromol/L [3H]-MTX in vitro was lower in T-ALL (threefold) and AML (fourfold) compared with c/preB-ALL (P +info)

(7/3345) Phase I study of eniluracil, a dihydropyrimidine dehydrogenase inactivator, and oral 5-fluorouracil with radiation therapy in patients with recurrent or advanced head and neck cancer.

5-Fluorouracil (5-FU) is an effective enhancer of radiation therapy (RT) in head and neck cancers. Due to rapid, predominantly hepatic metabolism by dihydropyrimidine dehydrogenase (DPD) and suggested clinical benefit from prolonged drug exposure, 5-FU is commonly given by continuous infusion. Eniluracil is a novel DPD-inactivator designed to prolong the half-life of 5-FU and provide sustained plasma concentrations of 5-FU with oral dosing. We conducted a Phase I study of the safety and efficacy of eniluracil given with oral 5-FU in patients receiving concurrent RT for recurrent or advanced squamous cell carcinomas of the head and neck. Thirteen patients with recurrent, metastatic, or high-risk (defined as an expected 2-year survival rate of <10%) head and neck cancer were enrolled and treated with concomitant chemoradiotherapy on an every-other-week schedule. Eniluracil at a fixed dose [20 mg twice a day (BID)] was given for 7 consecutive days (days 1-7). 5-FU and RT were given on 5 consecutive days (days 2-6). One patient was treated with once-daily RT (2.0 Gy fractions). The remaining patients received hyperfractionated RT (1.5-Gy fractions BID). The initial dose of 5-FU was 2.5 mg/m2 given BID. Dose escalation in patient cohorts was scheduled at 2.5-mg/m2 increments, with intrapatient dose escalation permitted. Lymphocyte DPD activity and serum 5-FU and uracil concentrations were monitored during two cycles. DPD activity was completely or nearly completely inactivated in all patients. Sustained, presumed therapeutic concentrations of 5-FU were observed at a dose of 5.0 mg/m2 given BID. Cumulative dose-limiting myelosuppression (both neutropenia and thrombocytopenia) was observed during the fourth and fifth cycles following administration of 5.0 mg/m2 5-FU BID. One patient died of neutropenic sepsis during cycle 4. Other late cycle toxicities included diarrhea, fatigue, and mucositis. Grade 3 mucositis was observed in 4 patients, but no grade 4 mucositis or grade 3 or 4 dermatitis was observed. A second patient death occurred during cycle 1 of treatment. No specific cause of death was identified. The study was subsequently discontinued. Cumulative myelosupression was the significant dose-limiting toxicity of oral 5-FU given with the DPD-inactivator eniluracil on an every-other-week schedule. Clinical radiation sensitization was not observed, based on the absence of dose-limiting mucositis and dermatitis. Alternative dosing schedules need to be examined to determine the most appropriate use of eniluracil and 5-FU as radiation enhancers.  (+info)

(8/3345) Colorectal liver metastasis thymidylate synthase staining correlates with response to hepatic arterial floxuridine.

We assessed whether intensity of colorectal liver metastasis staining with the thymidylate synthase (TS) antibody TS106 predicted response to hepatic arterial infusion (HAI) of floxuridine chemotherapy. Liver metastasis biopsies were taken during laparotomy for hepatic arterial cannulation and stained using the TS106 monoclonal antibody. Staining intensity was designated at histological examination by two independent assessors as either "high" or "low." Patients were treated by HAI, and liver metastasis response was assessed by comparison of computed tomography scan tumor volume before and after 4 months of treatment. A significant correlation (Fisher's exact test, P = 0.01) was noted between partial response to HAI and TS106 staining intensity in patients with colorectal liver metastases. Seventy-five percent of patients with evidence of a partial response had low TS staining compared with 29% of nonresponders. There was a significant difference (Fisher's exact test, P = 0.01) in the proportion of low (9 of 16) compared with high (3 of 20) TS staining tumors in which a partial response occurred. There was no significant difference (logrank test, P = 0.4) in survival from hepatic cannulation and HAI treatment of high (median, 322 days; interquartile range, 236-411) compared with low (median, 335 days; interquartile range, 301-547) TS staining patients. This study demonstrates an inverse correlation between TS immunohistochemical staining intensity in colorectal liver metastases and response to HAI. The results suggest that a prospective assessment of TS staining intensity in colorectal liver metastases would be useful to determine whether this method can be used to define patients who will benefit from HAI chemotherapy.  (+info)