A model for the sequential dominance of antigenic variants in African trypanosome infections. (57/3739)

Trypanosoma brucei infects various domestic and wild mammals in equatorial Africa. The parasite's genome contains several hundred alternative and highly diverged surface antigens, of which only a single one is expressed in any cell. Individual cells occasionally change expression of their surface antigen, allowing them to escape immune surveillance. These switches appear to occur in a partly random way, creating a diverse set of antigenic variants. In spite of this diversity, the parasitaemia develops as a series of outbreaks, each outbreak dominated by relatively few antigenic types. Host-specific immunity eventually clears the dominant antigenic types and a new outbreak follows from antigenic types that have apparently been present all along at low frequency. This pattern of sequential dominance by different antigenic types remains unexplained. I use a mathematical model of parasitaemia and host immunity to show that small variations in the rate at which each type switches to other types can explain the observations. My model shows that randomly chosen switch rates do not provide sufficiently ordered parasitaemias to match the observations. Instead, minor modifications of switch rates by natural selection are required to develop a sequence of ordered parasitaemias.  (+info)

Protection against toxoplasmosis in mice immunized with different antigens of Toxoplasma gondii incorporated into liposomes. (58/3739)

Different toxoplasma antigens were entrapped within liposomes and evaluated, in this form, for their ability to protect Swiss mice against toxoplasma infection: soluble tachyzoite antigen (L/TAg), tissue cyst (L/CAg), tachyzoite plus tissue cyst (L/TCAg) or purified antigen of tachyzoite (L/pTAg). The protein used in L/pTAg was purified from tachyzoites using a stage-specific monoclonal antibody which reacted at a molecular weight of 32 kD in SDS PAGE and silver stain using reduced condition. To compare the immuno-adjuvant action of liposomes and of Freund's Complete Adjuvant (FCA), another group of mice was immunized with soluble tachyzoite antigen (STAg) emulsified in FCA (FCA/TAg). Control groups were inoculated with (STAg) alone, phosphate-buffered saline (PBS), FCA with PBS (FCA/PBS) and empty liposomes (L/PBS). Mice were inoculated subcutaneously with these antigens six, four and two weeks before a challenge with 80 tissue cysts of the P strain of Toxoplasma gondii orally. All mice immunized with or without adjuvant showed a humoral response, as measured by Elisa. However, no correlation was found between antibody titer and protection against the challenge. All mice immunized with L/pTAg or L/TCAg survived (100), whereas 80% and 90% of mice from groups which received respectively PBS or FCA/PBS and L/PBS died. All mice immunized with antigens entrapped within liposomes (L/TAg, L/CAg, L/TCAg and L/pTAg) showed low numbers of intracerebral cysts.  (+info)

A dhfr-ts- Leishmania major knockout mutant cross-protects against Leishmania amazonensis. (59/3739)

E10-5A3 is a dhfr-ts- Leishmania major double knockout auxotrophic shown previously to induce substantial protection against virulent L. major infection in both genetically susceptible and resistant mice. We investigated the capacity of dhfr-ts- to protect against heterologous infection by L. amazonensis. The degree of protection was evaluated by immunization of BALB/c or C57BL/6 mice with E10-5A3, followed by L. amazonensis challenge. Whether immunized by subcutaneous (SC) or intravenous (IV) inoculation, susceptible and resistant mice displayed a partial degree of protection against challenge with virulent L. amazonensis. SC-immunized BALB/c mice developed lesions 40 to 65% smaller than non immunized mice, while IV immunization led to protection ranging from 40 to 75% in four out of six experiments compared to non immunized animals. The resistant C57BL/6 mice displayed comparable degrees of protection, 57% by SC and 49% by IV immunization. Results are encouraging as it has been previously difficult to obtain protection by SC vaccination against Leishmania, the preferred route for human immunization.  (+info)

Immune responses to Plasmodium falciparum-merozoite surface protein 1 (MSP1) antigen, II. Induction of parasite-specific immunoglobulin G in unsensitized human B cells after in vitro T-cell priming with MSP119. (60/3739)

A baculovirus recombinant antigen corresponding to the C-terminal 19 000 MW fragment of Plasmodium falciparum merozoite surface protein 1 (MSP119), has been used to prime T cells from individuals with no previous exposure to malaria, to provide help for the induction of a parasite specific antibody response in vitro. Although MSP119 alone could induce a small but detectable T-cell response, which included interleukin-4 (IL-4) secretion, this response was significantly increased by the presence of IL-2. In addition, IL-4 was shown to synergize with IL-2 for the induction of antigen-specific T-cell responses. If interferon-gamma (IFN-gamma), IL-12, or neutralizing anti-IL-4 antibody was present at the time of priming, the T-cell responses were abolished. Parasite-specific immunoglobulin G (IgG) could be detected after secondary restimulation with MSP119, IL-10 and anti-CD40 monoclonal antibody in cultures containing MSP119 primed T cells, autologous B cells, IL-2 and IL-4. No antibody was secreted in the absence of primed T cells in this B-cell culture assay. These data show that recombinant MSP119, a leading malaria vaccine candidate, can prime non-immune human lymphocytes under defined in vitro experimental conditions, which include regulatory cytokines and/or other costimulatory molecules. This is a complementary approach for exploring immunogenic mechanisms of potential vaccine candidates such as P. falciparum antigens in humans.  (+info)

Detection of the Plasmodium falciparum antigen histidine-rich protein 2 in blood of pregnant women: implications for diagnosing placental malaria. (61/3739)

Pregnant women have an increased susceptibility to infection by Plasmodium falciparum. Parasites may be present in the placenta yet not detectable in peripheral blood smears by routine light microscopy. In order to determine how frequently misdiagnosis occurs, peripheral blood and placental samples were collected from 1,077 Cameroonian women at the time of giving birth and examined for the presence of malarial parasites by using light microscopy. Results showed that 20.1% of the women who had placental malaria were peripheral blood smear negative. Thus, malarial infection was not detected by microscopic examination of peripheral blood smears from approximately one out of five malaria-infected women. Since P. falciparum parasites secrete histidine-rich protein 2 (HRP-2), we sought to determine if detecting HRP-2 in either peripheral plasma or whole blood might be used to diagnose the presence of parasites "hidden" in the placenta. Samples of peripheral plasma from 127 women with different levels of placental malarial infection were assayed by HRP-2-specific enzyme-linked immunosorbent assay. HRP-2 was detected in 88% of the women with placental malaria who tested negative by blood smear. Additionally, whole blood was obtained from 181 women and tested for HRP-2 with a rapid, chromatographic strip test (ICT). The ICT test accurately detected malarial infection in 89.1% of P. falciparum-infected women. Furthermore, 94% of women with malaria were accurately diagnosed by using a combination of microscopy and the ICT test. Thus, detection of HRP-2 in conjunction with microscopy should improve diagnosis of malaria in pregnant women.  (+info)

Immunochromatographic strip-based detection of Entamoeba histolytica-E. dispar and Giardia lamblia coproantigen. (62/3739)

BIOSITE Triage was 68.3% sensitive and 100% specific for the detection of Entamoeba histolytica-E. dispar (n = 71) compared to Alexon-Trend's ProSpecT test (reference standard) using fresh-frozen stool. Neither test is able to distinguish E. histolytica from E. dispar. Triage was 83.3% sensitive and 100% specific compared to microscopy (formalin-ether concentrates and permanent stains) for the detection of Giardia lamblia.  (+info)

Protective role for interleukin-5 during chronic Toxoplasma gondii infection. (63/3739)

To investigate the role of interleukin-5 (IL-5) during Toxoplasma gondii infection, IL-5 knockout (KO) mice and C57BL/6 control mice were infected intraperitoneally with ME49 cysts and the course of infection was monitored. The mortality rate during chronic infection was significantly greater in IL-5-deficient animals, and consistent with this finding, the KO mice harbored a greater number of brain cysts and tachyzoites than did their wild-type counterparts. Although the IL-5 KO animals did not succumb until late during infection, increased susceptibility, as measured by accelerated weight loss, was detectable during the acute stages of infection. The amounts of total immunoglobulin (Ig), IgM, and IgG2b were comparable in both strains, while the amount of IgG1 was much smaller in IL-5 KO mice. Spleen cell production of IL-12 in response to T. gondii antigen was approximately threefold lower in the KO strain, and this decrease correlated with a selective loss of B lymphocytes during culture. A link between the presence of B cells and augmented IL-12 production was established by the finding that after removal of B cells with monoclonal antibody and complement, wild-type- and KO-derived cells produced equivalent levels of IL-12 in response to T. gondii antigen. These results demonstrate a protective role of IL-5 against T. gondii infection and suggest that IL-5 may play a role in the production of IL-12.  (+info)

Isolation of peptides that mimic epitopes on a malarial antigen from random peptide libraries displayed on phage. (64/3739)

The ring-infected erythrocyte surface antigen (RESA) is a dense-granule protein of Plasmodium falciparum which binds to the cytoskeletal structure of the erythrocyte after parasite invasion. It is currently under trial as a vaccine candidate. In an effort to characterize further the antibody responses to this antigen, we have panned two independent libraries of random peptides expressed on the surface of filamentous phage with a monoclonal antibody (MAb 18/2) against RESA. One library consisted of a potentially constrained 17-mer peptide fused with the gpVIII phage coat protein, and the other displayed an unconstrained 15-mer as a fusion with the minor phage coat protein gpIII. Several rounds of biopanning resulted in enrichment from both libraries clones that interacted specifically with MAb 18/2 in protein-blotting and enzyme-linked immunosorbent assay experiments. Nucleotide sequencing of the random oligonucleotide insert revealed a common predominant motif: (S/T)AVDD. Several other clones had related but degenerate motifs. Thus, a monoclonal antibody against a malarial antigen can select common mimotopes from different random peptide libraries. We envisage many uses for this technology in malaria research.  (+info)