(1/1802) Human topoisomerase I promotes initiation of simian virus 40 DNA replication in vitro.

Addition of purified human topoisomerase I (topo I) to simian virus 40 T antigen-driven in vitro DNA replication reactions performed with topo I-deficient extracts results in a greater than 10-fold stimulation of completed molecules as well as a more than 3-fold enhancement of overall DNA replication. To further characterize this stimulation, we first demonstrate that bovine topo I but not Escherichia coli topo I can also enhance DNA replication. By using several human topo I mutants, we show that a catalytically active form of topo I is required. To delineate whether topo I influences the initiation or the elongation step of replication, we performed delayed pulse, pulse-chase, and delayed pulse-chase experiments. The results illustrate that topo I cannot promote the completion of partially replicated molecules but is needed from the beginning of the reaction to initiate replication. Competitive inhibition experiments with the topo I binding T antigen fragment 1-246T and a catalytically inactive topo I mutant suggest that part of topo I's stimulation of replication is mediated through a direct interaction with T antigen. Collectively, our data indicate that topo I enhances the synthesis of fully replicated DNA molecules by forming essential interactions with T antigen and stimulating initiation.  (+info)

(2/1802) Telomerase activity is sufficient to allow transformed cells to escape from crisis.

The introduction of simian virus 40 large T antigen (SVLT) into human primary cells enables them to proliferate beyond their normal replicative life span. In most cases, this temporary escape from senescence eventually ends in a second proliferative block known as "crisis," during which the cells cease growing or die. Rare immortalization events in which cells escape crisis are frequently correlated with the presence of telomerase activity. We tested the hypothesis that telomerase activation is the critical step in the immortalization process by studying the effects of telomerase activity in two mortal SVLT-Rasval12-transformed human pancreatic cell lines, TRM-6 and betalox5. The telomerase catalytic subunit, hTRT, was introduced into late-passage cells via retroviral gene transfer. Telomerase activity was successfully induced in infected cells, as demonstrated by a telomerase repeat amplification protocol assay. In each of nine independent infections, telomerase-positive cells formed rapidly dividing cell lines while control cells entered crisis. Telomere lengths initially increased, but telomeres were then maintained at their new lengths for at least 20 population doublings. These results demonstrate that telomerase activity is sufficient to enable transformed cells to escape crisis and that telomere elongation in these cells occurs in a tightly regulated manner.  (+info)

(3/1802) Different regulation of the p53 core domain activities 3'-to-5' exonuclease and sequence-specific DNA binding.

In this study we further characterized the 3'-5' exonuclease activity intrinsic to wild-type p53. We showed that this activity, like sequence-specific DNA binding, is mediated by the p53 core domain. Truncation of the C-terminal 30 amino acids of the p53 molecule enhanced the p53 exonuclease activity by at least 10-fold, indicating that this activity, like sequence-specific DNA binding, is negatively regulated by the C-terminal basic regulatory domain of p53. However, treatments which activated sequence-specific DNA binding of p53, like binding of the monoclonal antibody PAb421, which recognizes a C-terminal epitope on p53, or a higher phosphorylation status, strongly inhibited the p53 exonuclease activity. This suggests that at least on full-length p53, sequence-specific DNA binding and exonuclease activities are subject to different and seemingly opposing regulatory mechanisms. Following up the recent discovery in our laboratory that p53 recognizes and binds with high affinity to three-stranded DNA substrates mimicking early recombination intermediates (C. Dudenhoeffer, G. Rohaly, K. Will, W. Deppert, and L. Wiesmueller, Mol. Cell. Biol. 18:5332-5342), we asked whether such substrates might be degraded by the p53 exonuclease. Addition of Mg2+ ions to the binding assay indeed started the p53 exonuclease and promoted rapid degradation of the bound, but not of the unbound, substrate, indicating that specifically recognized targets can be subjected to exonucleolytic degradation by p53 under defined conditions.  (+info)

(4/1802) Association of simian virus 40 with a central nervous system lesion distinct from progressive multifocal leukoencephalopathy in macaques with AIDS.

The primate polyomavirus SV40 is known to cause interstitial nephritis in primary infections and progressive multifocal leukoencephalopathy (PML) upon reactivation of a latent infection in SIV-infected macaques. We now describe a second central nervous system manifestation of SV40: a meningoencephalitis affecting cerebral gray matter, without demyelination, distinct from PML. Meningoencephalitis appears also to be a primary manifestation of SV40 infection and can be seen in conjunction with SV40-induced interstitial nephritis and pneumonitis. The difference in the lesions of meningoencephalitis and PML does not appear to be due to cellular tropism, as both oligodendrocytes and astrocytes are infected in PML and meningoencephalitis, as determined by in situ hybridization or immunohistochemistry for SV40 coupled with immunohistochemistry for cellular determinants. This is further supported by examination of SV40 nucleic acid sequences from the ori-enhancer and large-T-antigen regions, which reveals no tissue-or lesion-specific variation in SV40 sequences.  (+info)

(5/1802) A telomere-independent senescence mechanism is the sole barrier to Syrian hamster cell immortalization.

Reactivation of telomerase and stabilization of telomeres occur simultaneously during human cell immortalization in vitro and the vast majority of human cancers possess high levels of telomerase activity. Telomerase repression in human somatic cells may therefore have evolved as a powerful resistance mechanism against immortalization, clonal evolution and malignant progression. The comparative ease with which rodent cells immortalize in vitro suggests that they have less stringent controls over replicative senescence than human cells. Here, we report that Syrian hamster dermal fibroblasts possess substantial levels of telomerase activity throughout their culture life-span, even after growth arrest in senescence. In our studies, telomerase was also detected in uncultured newborn hamster skin, in several adult tissues, and in cultured fibroblasts induced to enter the post-mitotic state irreversibly by serum withdrawal. Transfection of near-senescent dermal fibroblasts with a selectable plasmid vector expressing the SV40 T-antigen gene resulted in high-frequency single-step immortalization without the crisis typically observed during the immortalization of human cells. Collectively, these data provide an explanation for the increased susceptibility of rodent cells to immortalization (and malignant transformation) compared with their human equivalents, and provide evidence for a novel, growth factor-sensitive, mammalian senescence mechanism unrelated to telomere maintenance.  (+info)

(6/1802) The introduction of dominant-negative p53 mutants suppresses temperature shift-induced senescence in immortal human fibroblasts expressing a thermolabile SV40 large T antigen.

Immortal human fibroblasts, SVts8 cells, which express a heat-labile SV40 large T antigen, induces a senescence-like phenomenon in response to upward shift in temperature. Cells with arrested division show strong induction of senescence-associated beta-galactosidase. We examined how p53 and pRB are involved in this phenomenon since they are major targets of the T antigen. Transfection of cells with plasmids encoding the wild-type T antigen or human papilloma virus type 16 E6/E7 proteins completely abolished the arrest in cell division, a plasmid encoding the E6 protein suppressed it markedly, while a plasmid encoding E7 had no effect. Plasmids encoding dominant-negative p53 mutants also suppressed the arrest in cell division to various degrees. Upon temperature shift, p21 mRNA was upregulated 10-fold in SVts8 cells, but only slightly in clones expressing the wild-type T antigen or dominant-negative p53 mutants. These data demonstrate that p53 plays a major role in this senescence-like phenomenon.  (+info)

(7/1802) Overexpression of D-type cyclins, E2F-1, SV40 large T antigen and HPV16 E7 rescue cell cycle arrest of tsBN462 cells caused by the CCG1/TAF(II)250 mutation.

tsBN462 cells, which have a point mutation in CCG1/TAF(II)250, a component of TFIID complex, arrest in G1 at the nonpermissive temperature of 39.5 degrees C. Overexpression of D-type cyclins rescued the cell cycle arrest of tsBN462 cells, suggesting that the cell cycle arrest was through Rb. Consistent with this, overexpression of E2F-1, whose function is repressed by the hypophosphorylated form of Rb, also rescued the cell cycle arrest. Moreover, expression of the viral oncoproteins SV40 large T antigen and HPV16 E7, which both bind Rb and inactivate its function, rescued the cell cycle arrest, whereas HPV16 E6 did not. Mutation of the Rb-binding motif in E7 abrogated its ability to rescue the cell cycle arrest. Expression of exogenous cyclin D1, SV40 large T antigen or CCG1/TAF(II)250 increased cyclin A expression at 39.5 degrees C. Coexpression of HPV16 E7 and adenovirus E1b19K, which blocks apoptosis, rescued the proliferation of tsBN462 cells at 38.5 degrees C. To investigate the mechanism underlying the lack of cyclin D1 expression, deletion analysis of cyclin D1 promoter was performed. The 0.15 kbp cyclin D1 core promoter region, which lacks any transcription factor binding motifs, still exhibited a temperature-sensitive phenotype in tsBN462 cells suggesting that CCG1/TAF(II)250 is critical for the function of the cyclin D1 core promoter.  (+info)

(8/1802) Concerted expression of BK virus large T- and small t-antigens strongly enhances oestrogen receptor-mediated transcription.

Previous studies have shown that the human polyomavirus BK (BKV) genome contains an oestrogen response element (ERE). This isolated element binds its cognate receptor in vitro and can mediate 17beta-oestradiol-induced gene expression when linked to a heterologous promoter. The roles of the ERE- and the AP-1-binding sites in oestrogen receptor-directed transcription from the complete BKV promoter/enhancer (Dunlop strain) have been examined and the effects of the general co-activator CBP and large T- and small t-antigens on oestrogen receptor-mediated transcription have been investigated. A constitutive activated oestrogen receptor stimulated BKV promoter activity in HeLa cells. Mutations in either the ERE- or the AP-1-binding sites did not impair oestrogen receptor-induced activation of the BKV Dunlop promoter, while mutations in both binding motifs almost completely abolished oestrogen receptor-induced transcription. Simultaneous expression of large T- and small t-antigens strongly activated oestrogen receptor-mediated transcription. When expressed separately, only large T-antigen moderately stimulated oestrogen receptor-mediated transcription. The stimulatory effect of large T-antigen on the activity of the oestrogen receptor is probably indirect because no physical interaction between the two proteins was detected in a two-hybrid assay. Large T-antigen abrogated the synergistic effect on transcription between this nuclear receptor and the general co-activator CBP. The findings that the BKV early proteins amplify oestrogen receptor-mediated transcription may have important biological implications in individuals with raised oestrogen concentrations.  (+info)