Crystal structure of the nuclear matrix targeting signal of the transcription factor acute myelogenous leukemia-1/polyoma enhancer-binding protein 2alphaB/core binding factor alpha2. (57/1378)

Transcription factors of the acute myelogenous leukemia (AML)/polyoma enhancer-binding protein (PEBP2alpha)/core-binding factor alpha (CBFA) class are key transactivators of tissue-specific genes of the hematopoietic and bone lineages. AML-1/PEBP2alphaB/CBFA2 proteins participating in transcription are associated with the nuclear matrix. This association is solely dependent on a highly conserved C-terminal protein segment, designated the nuclear matrix targeting signal (NMTS). The NMTS of AML-1 is physically distinct from the nuclear localization signal, operates autonomously, and supports transactivation. Our data indicate that the related AML-3 and AML-2 proteins are also targeted to the nuclear matrix in situ by analogous C-terminal domains. Here we report the first crystal structure of an NMTS in an AML-1 segment fused to glutathione S-transferase. The model of the NMTS consists of two loops connected by a flexible U-shaped peptide chain.  (+info)

Association of terminal deoxynucleotidyl transferase with Ku. (58/1378)

Terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of nucleotides at the junctions of rearranging Ig and T cell receptor gene segments, thereby generating antigen receptor diversity. Ku is a heterodimeric protein composed of 70- and 86-kDa subunits that binds DNA ends and is required for V(D)J recombination and DNA double-strand break (DSB) repair. We provide evidence for a direct interaction between TdT and Ku proteins. Studies with a baculovirus expression system show that TdT can interact specifically with each of the Ku subunits and with the heterodimer. The interaction between Ku and TdT is also observed in pre-T cells with endogenously expressed proteins. The protein-protein interaction is DNA independent and occurs at physiological salt concentrations. Deletion mutagenesis experiments reveal that the N-terminal region of TdT (131 amino acids) is essential for interaction with the Ku heterodimer. This region, although not important for TdT polymerization activity, contains a BRCA1 C-terminal domain that has been shown to mediate interactions of proteins involved in DNA repair. The induction of DSBs in Cos-7 cells transfected with a human TdT expression construct resulted in the appearance of discrete nuclear foci in which TdT and Ku colocalize. The physical association of TdT with Ku suggests a possible mechanism by which TdT is recruited to the sites of DSBs such as V(D)J recombination intermediates.  (+info)

Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. (59/1378)

Ku protein and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are essential components of the double-strand break repair machinery in higher eukaryotic cells. Ku protein binds to broken DNA ends and recruits DNA-PKcs to form an enzymatically active complex. To characterize the arrangement of proteins in this complex, we developed a set of photocross-linking probes, each with a single free end. We have previously used this approach to characterize the contacts in an initial Ku-DNA complex, and we have now applied the same technology to define the events that occur when Ku recruits DNA-PKcs. The new probes allow the binding of one molecule of Ku protein and one molecule of DNA-PKcs in a defined position and orientation. Photocross-linking reveals that DNA-PKcs makes direct contact with the DNA termini, occupying an approximately 10 bp region proximal to the free end. Characterization of the Ku protein cross-linking pattern in the presence and absence of DNA-PKcs suggests that Ku binds to form an initial complex at the DNA ends, and that recruitment of DNA-PKcs induces an inward translocation of this Ku molecule by about one helical turn. The presence of ATP had no effect on protein-DNA contacts, suggesting that neither DNA-PK-mediated phosphorylation nor a putative Ku helicase activity plays a role in modulating protein conformation under the conditions tested.  (+info)

Fetal Alz-50 clone 1, a novel zinc finger protein, binds a specific DNA sequence and acts as a transcriptional regulator. (60/1378)

Fetal Alz-50 clone 1 (FAC1) is a novel, developmentally regulated gene that exhibits changes in protein expression and subcellular localization during neuronal development and neurodegeneration. To understand the functional implications of altered subcellular localization, we have established a normal cellular function of FAC1. The FAC1 amino acid sequence contains regional homology to transcriptional regulators. Using the polymerase chain reaction-assisted binding site selection assay, we have identified a DNA sequence recognized by recombinant FAC1. Mutation of any 2 adjacent base pairs in the identified binding site dramatically reduced the binding preference of FAC1, demonstrating that the binding is specific for the identified site. Nuclear extracts from neural and non-neural cell lines contained a DNA-binding activity with similar specificity and nucleotide requirements as the recombinant FAC1 protein. This DNA-binding activity can be attributed to FAC1 since it is dependent upon the presence of FAC1 and behaves identically on a nondenaturing polyacrylamide gel as transiently transfected FAC1. In NIH3T3 cells, luciferase reporter plasmids containing the identified binding site (CACAACAC) were repressed by cotransfected FAC1 whether the binding site was proximal or distal to the transcription initiation site. This study indicates that FAC1 is a DNA-binding protein that functions as a transcription factor when localized to the nucleus.  (+info)

Ku80 can translocate to the nucleus independent of the translocation of Ku70 using its own nuclear localization signal. (61/1378)

Ku antigen is a complex of Ku70 and Ku80 subunits and plays an important role in not only DNA double-strand breaks (DSB) repair and V(D)J recombination, but also in growth regulation. Ku is generally believed to always form and function as heterodimers on the basis of in vitro observations. Here we demonstrate that the localization of Ku80 does not completely coincide with that of Ku70. Ku70 and Ku80 were colocalized in the nucleus in the interphase but not in the late telophase/early G1 phase of the cell cycle. Since the in vivo function of Ku might be partially regulated by the control of its transport, we attempted to investigate the molecular mechanisms underlying the nuclear translocation of Ku. The nuclear translocation of Ku80 started during the late telophase/early G1 phase after the nuclear envelope was formed and this was preceded by the nuclear translocation of Ku70. Furthermore, we found that the Ku80 protein was transported to the nucleus without heterodimerization with Ku70. To understand in detail the mechanism of transport of Ku80, we attempted to identify the nuclear localization signal (NLS) of Ku80 and defined to a region spanning nine amino acid residues (positions 561 - 569). The Ku80 NLS was demonstrated to be mediated to the nuclear rim by two components of PTAC58 and PTAC97. All these findings support the idea that Ku80 can translocate to the nucleus using its own NLS independent of the translocation of Ku70.  (+info)

The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. (62/1378)

There are two types of chromosome instability, structural and numerical, and these are important in cancer. Many structural abnormalities are likely to involve double-strand DNA (dsDNA) breaks. Nonhomologous DNA end joining (NHEJ) and homologous recombination are the major pathways for repairing dsDNA breaks. NHEJ is the primary pathway for repairing dsDNA breaks throughout the G0, G1 and early S phases of the cell cycle [1]. Ku86 and DNA ligase IV are two major proteins in the NHEJ pathway. We examined primary dermal fibroblasts from mice (wild type, Ku86(+/-), Ku86(-/-), and DNA ligase IV(+/-)) for chromosome breaks. Fibroblasts from Ku86(+/-) or DNA ligase IV(+/-) mice have elevated frequencies of chromosome breaks compared with those from wild-type mice. Fibroblasts from Ku86(-/-) mice have even higher levels of chromosome breaks. Primary pre-B cells from the same animals did not show significant accumulation of chromosome breaks. Rather the pre-B cells showed increased cell death. These studies demonstrate that chromosome breaks arise frequently and that NHEJ is required to repair this constant spontaneous damage.  (+info)

DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. (63/1378)

Recent findings intriguingly place DNA double-strand break repair proteins at chromosome ends in yeast, where they help maintain normal telomere length and structure. In the present study, an essential telomere function, the ability to cap and thereby protect chromosomes from end-to-end fusions, was assessed in repair-deficient mouse cell lines. By using fluorescence in situ hybridization with a probe to telomeric DNA, spontaneously occurring chromosome aberrations were examined for telomere signal at the points of fusion, a clear indication of impaired end-capping. Telomeric fusions were not observed in any of the repair-proficient controls and occurred only rarely in a p53 null mutant. In striking contrast, chromosomal end fusions that retained telomeric sequence were observed in nontransformed DNA-PK(cs)-deficient cells, where they were a major source of chromosomal instability. Metacentric chromosomes created by telomeric fusion became even more abundant in these cells after spontaneous immortalization. Restoration of repair proficiency through transfection with a functional cDNA copy of the human DNA-PK(cs) gene reduced the number of fusions compared with a negative transfection control. Virally transformed cells derived from Ku70 and Ku80 knockout mice also displayed end-to-end fusions. These studies demonstrate that DNA double-strand break repair genes play a dual role in maintaining chromosomal stability in mammalian cells, the known role in repairing incidental DNA damage, as well as a new protective role in telomeric end-capping.  (+info)

Chromosomal instability and cytoskeletal defects in oral cancer cells. (64/1378)

Oral squamous cell carcinomas are characterized by complex, often near-triploid karyotypes with structural and numerical variations superimposed on the initial clonal chromosomal alterations. We used immunohistochemistry combined with classical cytogenetic analysis and spectral karyotyping to investigate the chromosomal segregation defects in cultured oral squamous cell carcinoma cells. During division, these cells frequently exhibit lagging chromosomes at both metaphase and anaphase, suggesting defects in the mitotic apparatus or kinetochore. Dicentric anaphase chromatin bridges and structurally altered chromosomes with consistent long arms and variable short arms, as well as the presence of gene amplification, suggested the occurrence of breakage-fusion-bridge cycles. Some anaphase bridges were observed to persist into telophase, resulting in chromosomal exclusion from the reforming nucleus and micronucleus formation. Multipolar spindles were found to various degrees in the oral squamous cell carcinoma lines. In the multipolar spindles, the poles demonstrated different levels of chromosomal capture and alignment, indicating functional differences between the poles. Some spindle poles showed premature splitting of centrosomal material, a precursor to full separation of the microtubule organizing centers. These results indicate that some of the chromosomal instability observed within these cancer cells might be the result of cytoskeletal defects and breakage-fusion-bridge cycles.  (+info)