Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. (17/1345)

In an effort to identify tumor-specific antigens recognized by CD4(+) T cells, an approach was developed that allows the screening of an invariant chain-complementary DNA fusion library in a genetically engineered cell line expressing the essential components of the major histocompatibility complex (MHC) class II processing and presentation pathway. This led to the identification of a mutated form of human CDC27, which gave rise to an HLA-DR4-restricted melanoma antigen. A mutated form of triosephosphate isomerase, isolated by a biochemical method, was also identified as an HLA-DR1-restricted antigen. Thus, this approach may be generally applicable to the identification of antigens recognized by CD4(+) T cells, which could aid the development of strategies for the treatment of patients with cancer, autoimmune diseases, or infectious diseases.  (+info)

UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. (18/1345)

Modification of cell surface molecules with sialic acid is crucial for their function in many biological processes, including cell adhesion and signal transduction. Uridine diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) is an enzyme that catalyzes an early, rate-limiting step in the sialic acid biosynthetic pathway. UDP-GlcNAc 2-epimerase was found to be a major determinant of cell surface sialylation in human hematopoietic cell lines and a critical regulator of the function of specific cell surface adhesion molecules.  (+info)

Humanized anti-HM1.24 antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells. (19/1345)

To develop a new immunotherapy for multiple myeloma, we have generated a monoclonal antibody (MoAb) that detects a human plasma cell-specific antigen, HM1.24. Our previous study has shown that mouse anti-HM1.24 MoAb inhibits the proliferation of human myeloma cells implanted into severe combined immunodeficiency mice. In this report, we evaluated the antitumor activity of the humanized anti-HM1.24 MoAb (IgG1kappa), which was constructed by grafting the complementarity-determining regions. In contrast to the parent mouse MoAb, humanized anti-HM1.24 MoAb mediated antibody-dependent cellular cytotoxicity (ADCC) against both myeloma cell lines and myeloma cells from patients in the presence of human peripheral blood mononuclear cells (PBMCs). The PBMCs from untreated myeloma patients exhibited ADCC activity as efficiently as those of healthy donors. Although decreased ADCC activity of PBMCs was observed in patients who responded poorly to conventional chemotherapy, it could be significantly augmented by the stimulation with interleukin-2 (IL-2), IL-12, or IL-15. There was a strong correlation between the percentage of CD16(+) cells and ADCC activity in the PBMCs of myeloma patients. Moreover, peripheral blood stem cell collections from myeloma patients contained higher numbers of CD16(+) cells than PBMCs and exhibited ADCC activity that was enhanced by IL-2. These results indicate that humanized anti-HM1.24 MoAb has potential as a new therapeutic strategy in multiple myeloma and that treatment of effector cells with immunomodulating cytokines can restore the effect of humanized anti-HM1.24 MoAb in patients with diminished ADCC activity.  (+info)

Antigen secreted from noncytosolic Listeria monocytogenes is processed by the classical MHC class I processing pathway. (20/1345)

Intracellular bacteria can reside in a vacuolar compartment, or they can escape the vacuole and become free living in the cytoplasm. The presentation of Ag by class I MHC molecules has been defined primarily for Ag present in the cytoplasm. It was therefore thought that Ags from bacteria that remain in a vacuole would not be presented by MHC class I molecules. Although some studies have provided data to support this idea, it is not necessarily true for all intracellular bacteria. For example, we have previously demonstrated that an epitope from the p60 protein secreted by LLO- Listeria monocytogenes, which does not reside in the cytoplasm, can be presented by MHC class I molecules to a T cell clone specific for the epitope, p60217-225. We have further examined the route by which Ag secreted by LLO- L. monocytogenes is presented by MHC class I molecules. Using pharmacological inhibitors, we demonstrate that MHC class I presentation of the p60 epitope derived from by LLO- L. monocytogenes requires phagolysosome fusion and processing by the proteasome. Lysosomal cathepsins, however, are not required for processing of the p60 epitope. Similarly, processing of the AttM epitope, secreted by LLO- L. monocytogenes and presented by H2-M3, also requires phagolysosome fusion and cleavage by the proteasome. Thus, p60 and AttM secreted by LLO- L. monocytogenes are processed via the classical class I pathway for presentation by MHC class I molecules.  (+info)

Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. (21/1345)

NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.  (+info)

MHC class II antigen processing in B cells: accelerated intracellular targeting of antigens. (22/1345)

Processing and presentation by Ag-specific B cells is initiated by Ag binding to the B cell Ag receptor (BCR). Cross-linking of the BCR by Ag results in a rapid targeting of the BCR and bound Ag to the MHC class II peptide loading compartment (IIPLC). This accelerated delivery of Ag may be essential in vivo during periods of rapid Ag-driven B cell expansion and T cell-dependent selection. Here, we use both immunoelectron microscopy and a nondisruptive protein chemical polymerization method to define the intracellular pathway of the targeting of Ags by the BCR. We show that following cross-linking, the BCR is rapidly transported through transferrin receptor-containing early endosomes to a LAMP-1+, beta-hexosaminadase+, multivesicular compartment that is an active site of peptide-class II complex assembly, containing both class II-invariant chain complexes in the process of invariant chain proteolytic removal as well as mature peptide-class II complexes. The BCR enters the class II-containing compartment as an intact mIg/Igalpha/Igbeta complex bound to Ag. The pathway by which the BCR targets Ag to the IIPLC appears not to be identical to that by which Ags taken up by fluid phase pinocytosis traffick, suggesting that the accelerated BCR pathway may be specialized and potentially independently regulated.  (+info)

pH-dependent peptide binding properties of the type I diabetes-associated I-Ag7 molecule: rapid release of CLIP at an endosomal pH. (23/1345)

MHC class II molecules and invariant chain assemble at a neutral pH in the endoplasmic reticulum and are transported to a low pH compartment where the invariant chain is trimmed to the class II-associated invariant chain peptide (CLIP). For many major histocompatibility complex class II molecules, DM is required for rapid removal of CLIP, which allows binding of antigenic peptides. Since I-Ag7 confers susceptibility to type I diabetes in NOD mice, the biochemical requirements for peptide loading were examined using soluble I-Ag7 expressed in insect cells. I-Ag7 formed long-lived complexes with naturally processed peptides from transferrin and albumin, whereas several peptides that represent T cell epitopes of islet autoantigens were poor binders. I-Ag7-peptide complexes were not sodium dodecyl sulfate (SDS) resistant, indicating that SDS sensitivity may be an intrinsic property of I-Ag7. Complexes of I-Ag7 and CLIP formed at a neutral pH, but rapidly dissociated at pH 5. This rapid dissociation was due to a poor fit of M98 of CLIP in the P9 pocket of I-Ag7, since substitution of M98 by a negatively charged residue greatly enhanced the stability of the complex. These biochemical properties of I-Ag7 result in the rapid generation of empty molecules at an endosomal pH and have a global effect on peptide binding by I-Ag7.  (+info)

Functional early endosomes are required for maturation of major histocompatibility complex class II molecules in human B lymphoblastoid cells. (24/1345)

Major histocompatibility complex (MHC) class II molecules are targeted together with their invariant chain (Ii) chaperone from the secretory pathway to the endocytic pathway. Within the endosome/lysosome system, Ii must be degraded to enable peptide capture by MHC class II molecules. It remains controversial exactly which route or routes MHC class II/Ii complexes take to reach the sites of Ii processing and peptide loading. We have asked whether early endosomes are required for successful maturation of MHC class II molecules by using an in situ peroxidase/diaminobenzidine compartment ablation technique. Cells whose early endosomes were selectively ablated using transferrin-horseradish peroxidase conjugates fail to mature their newly synthesized MHC class II molecules. We show that whereas transport of secretory Ig through the secretory pathway is virtually normal in the ablated cells, newly synthesized MHC class II/Ii complexes never reach compartments capable of processing Ii. These results strongly suggest that the transport of the bulk of newly synthesized MHC class II molecules through early endosomes is obligatory and that direct input into later endosomes/lysosomes does not take place.  (+info)