Glucocorticoid-mediated regulation of thymic dendritic cell function. (33/1355)

The possible effects of glucocorticoids (GC) on the biology of thymic dendritic cells (DC) have been analyzed. Both DC and GC seem to be involved in intrathymic T cell selection but possible relationships, if any, between them remain currently unknown. For the first time, we have proved the expression of GC receptors in thymic DC. Moreover, our data demonstrate that in vitro dexamethasone (Dex) treatment barely affects the viability of mature thymic DC, which are largely resistant to its apoptotic effect. Dex-treated thymic DC also show a slightly reduced surface expression of some adhesion and co-stimulatory molecules in correlation with diminished allostimulatory properties. Furthermore, the production of both IL-1beta and tumor necrosis factor (TNF)-alpha, but not that of IL-6 and IL-10, diminished in the mixed leukocyte reaction established with Dex-treated thymic DC. However, the addition of recombinant rat IL-1beta and TNF-alpha, alone or in combination, did not recover the allostimulatory capacity. Taken together, these results support certain GC-mediated regulation of the activity of thymic DC which could be relevant for the biology of the thymus gland.  (+info)

Calcium ionophore-treated myeloid cells acquire many dendritic cell characteristics independent of prior differentiation state, transformation status, or sensitivity to biologic agents. (34/1355)

We previously reported that treatment of human peripheral blood monocytes or dendritic cells (DC) with calcium ionophore (CI) led to the rapid (18 hour) acquisition of many characteristics of mature DC, including CD83 expression. We therefore investigated whether less-mature myeloid cells were similarly susceptible to rapid CI activation. Although the promyelocytic leukemia line HL-60 was refractory to cytokine differentiation, CI treatment induced near-uniform overnight expression of CD83, CD80 (B7.1), and CD86 (B7. 2), as well as additional characteristics of mature DC. Several cytokines that alone had restricted impact on HL-60 could enhance CI-induced differentiation and resultant T-cell sensitizing capacity. In parallel studies, CD34(pos) cells cultured from normal donor bone marrow developed marked DC-like morphology after overnight treatment with either rhCD40L or CI, but only CI simultaneously induced upregulation of CD83, CD80, and CD86. This contrasted to peripheral blood monocytes, in which such upregulation could be induced with either CI or rhCD40L treatment. We conclude that normal and transformed myeloid cells at many stages of ontogeny possess the capacity to rapidly acquire many properties of mature DC in response to CI treatment. This apparent ability to respond to calcium mobilization, even when putative signal-transducing agents are inoperative, suggests strategies for implementing host antileukemic immune responses.  (+info)

B7.2 (CD86) but not B7.1 (CD80) costimulation is required for the induction of low dose oral tolerance. (35/1355)

Oral administration of Ag leads to systemic unresponsiveness (oral tolerance) to the fed Ag. Oral tolerance is mediated through active suppression by Th2 or TGF-beta-secreting cells or clonal anergy/deletion, depending on the Ag dose used, with low dose favoring active suppression and high dose favoring anergy/deletion. The nature of APC and inductive events leading to the generation of oral tolerance have not been well defined. To determine the role of costimulatory molecules in the induction of oral tolerance, we have tested the effect of anti-B7.1 or anti-B7.2 mAb on the induction of tolerance by both high and low dose Ag feeding regimens. Our results show that the B7.2 molecule is critical for the induction of low-dose oral tolerance. Injection of anti-B7.2 but not anti-B7.1 intact Ab or Fab fragments inhibited the oral tolerance induced by low-dose (0.5 mg) but not high-dose OVA (25 mg) feeding. In addition, anti-B7.2, but not anti-B7.1, inhibited secretion of TGF-beta, one of the primary cytokines that mediates low-dose oral tolerance. Finally, in the in vivo model of experimental allergic encephalomyelitis, anti-B7.2 mAb treatment abrogated protection offered against disease by low-dose myelin basic protein feeding, while anti-B7.1 had no effect. Anti B7.2 had no effect on disease suppression by high-dose oral Ag. These data demonstrate that B7.2 costimulatory molecules play an essential role in the induction of low-dose oral tolerance.  (+info)

B7 costimulation in the development of lupus: autoimmunity arises either in the absence of B7.1/B7.2 or in the presence of anti-b7.1/B7.2 blocking antibodies. (36/1355)

Costimulatory molecules, termed B7.1 and B7.2, are present on the surfaces of APC and are important for the activation of T lymphocytes specific for both foreign Ags and autoantigens. We have examined the role of B7 costimulation in the MRL-lpr/lpr murine model of human systemic lupus erythematosus. MRL-lpr/lpr mice receiving both anti-B7.1 and anti-B7.2 Abs expressed significantly lower anti-small nuclear ribonucleoprotein particles (snRNP) and anti-dsDNA autoantibodies than did untreated mice. Anti-B7.2 Ab treatment alone inhibited anti-dsDNA autoantibody expression while having no effect on anti-snRNP autoantibody expression. Anti-B7.1 Ab treatment alone did not change the expression of either anti-snRNP or anti-dsDNA autoantibodies. Parallel studies performed in MRL-lpr/lpr mice genetically deficient in either B7.1 or B7.2 expressed autoantibody profiles comparable to those found in wild-type MRL-lpr/lpr mice. However, B7.1-deficient MRL-lpr/lpr mice exhibited distinct and more severe glomerulonephritis while B7.2-deficient MRL-lpr/lpr mice had significantly milder or absent kidney pathology as compared with age-matched wild-type mice. These studies indicate that each B7 costimulatory signal may control unique pathological events in murine systemic lupus erythematosus that may not always be apparent in autoantibody titers alone.  (+info)

Regulation of alveolar macrophage-T cell interactions during Th1-type sarcoid inflammatory process. (37/1355)

The accessory function of antigen-presenting cells depends on the presence of a number of costimulatory molecules, including members of the B7 family (CD80 and CD86) and the CD5 coligand CD72. The aim of this study was to evaluate the regulation of T cell-antigen-presenting cell costimulatory pathways in the lung of patients with a typical Th1-type reaction, i.e., sarcoidosis. Although normal alveolar macrophages (AMs) did not bear or bore low levels of costimulatory molecules, AMs from sarcoid patients with CD4 T-cell alveolitis upmodulated CD80, CD86, and CD72 and expressed high levels of interleukin (IL)-15; lymphocytes accounting for T-cell alveolitis expressed Th1-type cytokines [interferon (IFN)-gamma and/or IL-2] and bore high levels of CD5 and CD28 but not of CD152 molecules. In vitro stimulation of AMs with Th1-related cytokines (IL-15 and IFN-gamma) upregulated the expression of CD80 and CD86 molecules. However, stimulation with IL-15 induced the expression of Th1-type cytokines (IFN-gamma) and CD28 on sarcoid T cells, suggesting a role for this macrophage-derived cytokine in the activation of the sarcoid T-cell pool. The hypothesis that CD80 and CD86 molecules regulate the sarcoid T-cell response was confirmed by the evidence that AMs induced a strong proliferation of T cells that was inhibited by pretreatment with CD80 and CD86 monoclonal antibodies. To account for these data, it is proposed that locally released cytokines provide AMs with accessory properties that contribute to the development of sarcoid T-cell alveolitis.  (+info)

Functional CD40 ligand is expressed on epidermal Langerhans cells. (38/1355)

Epidermal Langerhans cells (LC) are bone-marrow-derived major histocompatibility complex (MHC) class II antigen-expressing antigen-presenting cells (APC) that comprise 1-3% of total epidermal cells (EC). LC express high levels of MHC class II antigen and augment costimulatory molecules such as B7-1, B7-2 during culture. In a previous report, using purified murine LC, we showed that freshly prepared LC (fLC) do not express CD40, whereas cLC express CD40. Tumor necrosis factor alpha (TNF-alpha) enhanced CD40 expression on LC during culture. We examined the expression of CD40L on LC and found that both fLC and cLC expressed mRNA for CD40L. FACS analysis revealed that cLC cultured for 36 h expressed CD40L but fLC did not. When we examined the cytoplasmic CD40L, however, both fLC and cLC expressed cytoplasmic CD40L. TNF-alpha, which up-regulated CD40 expression on LC during culture, did not modulate CD40L. Co-culture of purified LC ith anti-CD40L markedly inhibited the up-regulation of B7-1 expression on LC and caused partial inhibition of B7-2 expression during culture. These results indicate that CD40L is expressed on cLC, and that CD40L on LC modulates the expression of costimulatory molecules such as B7-1 and B7-2 on LC.  (+info)

Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes. (39/1355)

Eosinophils are the source of various immunoregulatory cytokines, but the membrane molecules involved in their secretion have not been clearly identified. Here we show that peripheral blood eosinophils from hypereosinophilic patients could express membrane CD86 but not CD80. The T cell costimulatory molecule CD28 is also detected on the eosinophil surface. CD28 ligation but not CD86 ligation resulted in interleukin (IL)-2 and interferon (IFN)-gamma secretion by eosinophils, whereas IL-4, IL-5, and IL-10 were not detected. In contrast to T cells requiring two signals for effective stimulation, CD28 ligation alone was sufficient for optimal eosinophil activation. Eosinophil-derived IL-2 and IFN-gamma were biologically active, as supernatants from anti-CD28-treated cells were able to induce CTLL-2 proliferation and major histocompatibility complex class II expression on the colon carcinoma cell line Colo 205, respectively. Addition of secretory immunoglobulin (Ig)A-anti-IgA complexes, which could induce the release of IL-10, very significantly inhibited both CD28-mediated IL-2 and IFN-gamma release. These results suggest that the release of type 1 (IFN-gamma and IL-2) versus type 2 cytokines by eosinophils is not only differential but also dependent on cross-regulatory signals. They confirm that through activation of costimulatory molecules, eosinophils could function as an immunoregulatory cell involved in the release of both type 1 and type 2 cytokines.  (+info)

Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation. (40/1355)

Activated vascular endothelial cells (ECs) express major histocompatibility complex (MHC) class II molecules in vitro and in vivo in acute and chronic allograft rejection. However, human ECs may be limited in their ability to effectively activate CD4(+) T cells, because they do not express members of the B7 family (CD80 and CD86) of costimulatory molecules. In this study, we show that ECs promote the full activation of CD4(+) T cells via trans-costimulatory interactions. By reverse transcriptase polymerase chain reaction, Western blot, and FACS((R)) analysis, we could not detect the expression of CD80 and CD86 on activated ECs and found minimal expression on purified CD4(+) T cells. In contrast, both CD80 and CD86 were expressed in allogeneic CD4(+) T cell-EC cocultures. Expression of CD86 peaked at early times between 12 and 24 h after coculture, whereas CD80 was not expressed until 72 h. Addition of anti-CD86 but not anti-CD80 monoclonal antibodies to cocultures inhibited IL-2 production and the proliferation of CD4(+) T cells to allogeneic donor human umbilical vein ECs (HUVECs), as well as to skin and lung microvascular ECs. Furthermore, we found that interferon gamma-activated ECs but not untreated ECs induced mRNA and cell surface expression of CD80 and CD86 on CD4(+) T cells, and these T cells were functional to provide a trans-costimulatory signal to autologous CD4(+) T cells. Blockade of MHC class II and lymphocyte function-associated antigen 3 but not other EC cell surface molecules on IFN-gamma-activated ECs inhibited the induction of CD86 on CD4(+) T cells. Transmigration of purified populations of monocytes across EC monolayers similarly resulted in the induction of functional CD86, but also induced the de novo expression of the cytokines interleukin (IL)-1alpha and IL-12. In addition, EC-modified monocytes supported enhanced proliferation of allogeneic and autologous CD4(+) T cells. Taken together, these data define the ability of the endothelium to modify CD4(+) T cells and monocytes for trans-costimulatory events. This unique function of the endothelium in alloimmune T cell activation has functional consequences for the direct and the indirect pathways of allorecognition.  (+info)