Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. (57/333)

The binding of hepatitis C virus glycoprotein E2 to the large extracellular loop (LEL) of CD81 has been shown to modulate human T-cell and NK cell activity in vitro. Using random mutagenesis of a chimera of maltose-binding protein and LEL residues 113 to 201, we have determined that the E2-binding site on CD81 comprises residues Ile(182), Phe(186), Asn(184), and Leu(162). These findings reveal an E2-binding surface of approximately 806 A(2) and potential target sites for the development of small-molecule inhibitors of E2 binding.  (+info)

Release and intercellular transfer of cell surface CD81 via microparticles. (58/333)

The human tetraspan molecule CD81 is a coreceptor in B and T cell activation and a candidate receptor for hepatitis C virus infection. We examined the surface expression of CD81 on B and T lymphocytes by quantitative flow cytometry. Upon cellular activation, CD81 surface levels were rapidly reduced. This reduction occurred as early as 1 h after activation and was linked to the release of CD81-positive microparticles into the cell culture medium. CD81 mRNA levels were not affected early after activation, but the release of CD81-positive microparticles was rapidly enhanced. In addition, intercellular transfer of CD81 was observed upon coculture of CD81-positive donor cells (Jurkat T cell line) with CD81-negative acceptor cells (U937 promonocytic cell line). This transfer was rapidly increased upon T cell activation, coinciding with enhanced CD81 release from activated Jurkat cells. We propose that the release and intercellular trafficking of CD81-positive microparticles regulate the expression of CD81 surface receptors in lymphocytes and play a role in the immune response during infections.  (+info)

Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. (59/333)

The tetraspanin CD81 has been involved in T-dependent B cell-mediated immune responses. However, the behavior of CD81 during immune synapse (IS) formation has not been elucidated. We determined herein that CD81 redistributed to the contact area of T cell-B cell and T cell-dendritic cell conjugates in an Ag-dependent manner. Confocal microscopy showed that CD81 colocalized with CD3 at the central supramolecular activation complex. Videomicroscopy studies with APC or T cells transiently expressing CD81-green fluorescent protein (GFP) revealed that in both cells CD81 redistributed toward the central supramolecular activation complex. In T lymphocytes, CD81-GFP rapidly redistributed to the IS, whereas, in the APC, CD81-GFP formed a large accumulation in the contact area that later concentrated in a discrete cluster and waves of CD81 accumulated at the IS periphery. These results suggest a relevant role for CD81 in the topography of the IS that would explain its functional implication in T cell-B cell collaboration.  (+info)

Expression of human CD81 in transgenic mice does not confer susceptibility to hepatitis C virus infection. (60/333)

We previously demonstrated that hepatitis C virus (HCV) binds to human CD81 through the E2 glycoprotein. Therefore, expression of the human CD81 molecule in transgenic mice was expected to provide a new tool to study HCV infection in vivo, as the chimpanzee is the only species currently available as a laboratory animal model that can be infected with HCV. We produced transgenic mice expressing the human CD81 protein in a wide variety of tissues. We confirmed binding of recombinant E2 glycoprotein to the liver tissue as well as to thymocytes and splenic lymphocytes in the transgenic mice. We inoculated chimpanzee plasma infected with HCV into these animals. None of these transgenic animals showed evidence of viral replication. Furthermore, human CD81 transgenic mice that lack expression of endogenous mouse CD81 were also resistant to HCV infection. We conclude that expression of human CD81 alone is insufficient to confer susceptibility to HCV infection in the mouse. The presence of additional possible factors for HCV infection is discussed.  (+info)

Identification of a lactoferrin-derived peptide possessing binding activity to hepatitis C virus E2 envelope protein. (61/333)

Bovine and human lactoferrins (LF) prevent hepatitis C virus (HCV) infection in cultured human hepatocytes; the preventive mechanism is thought to be the direct interaction between LF and HCV. To clarify this hypothesis, we have characterized the binding activity of LF to HCV E2 envelope protein and have endeavored to determine which region(s) of LF are important for this binding activity. Several regions of human LF have been expressed and purified as thioredoxin-fused proteins in Escherichia coli. Far-Western blot analysis using these LF fragments and the E2 protein, expressed in Chinese hamster ovary cells, revealed that the 93 carboxyl amino acids of LF specifically bound to the E2 protein. The 93 carboxyl amino acids of LFs derived from bovine and horse cells also possessed similar binding activity to the E2 protein. In addition, the amino acid sequences of these carboxyl regions appeared to show partial homology to CD81, a candidate receptor for HCV, and the binding activity of these carboxyl regions was also comparable with that of CD81. Further deletion analysis identified 33 amino acid residues as the minimum binding site in the carboxyl region of LF, and the binding specificity of these 33 amino acids was also confirmed by using 33 maltose-binding protein-fused amino acids. Furthermore, we demonstrated that the 33 maltose-binding protein-fused amino acids prevented HCV infection in cultured human hepatocytes. In addition, the site-directed mutagenesis to an Ala residue in both terminal residues of the 33 amino acids revealed that Cys at amino acid 628 was determined to be critical for binding to the E2 protein. These results led us to consider the development of an effective anti-HCV peptide. This is the first identification of a natural protein-derived peptide that specifically binds to HCV E2 protein and prevents HCV infection.  (+info)

Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. (62/333)

The envelope glycoprotein E2 of hepatitis C virus (HCV) is the target of neutralizing antibodies and is presently being evaluated as an HCV vaccine candidate. HCV binds to human cells through the interaction of E2 with the tetraspanin CD81, a putative viral receptor component. We have analyzed four different E2 proteins from 1a and 1b viral isolates for their ability to bind to recombinant CD81 in vitro and to the native receptor displayed on the surface of Molt-4 cells. A substantial difference in binding efficiency between these E2 variants was observed, with proteins derived from 1b subtypes showing significantly lower binding than the 1a protein. To elucidate the mechanism of E2-CD81 interaction and to identify critical regions responsible for the different binding efficiencies of the E2 variants, several mutants were generated in E2 protein regions predicted by computer modeling to be exposed on the protein surface. Functional analysis of these E2 derivatives revealed that at least two distinct domains are responsible for interaction with CD81. A first segment centered around amino acid residues 613 to 618 is essential for recognition, while a second element including the two hypervariable regions (HVRs) modulates E2 receptor binding. Binding inhibition experiments with anti-HVR monoclonal antibodies confirmed this mapping and supported the hypothesis that a complex interplay between the two HVRs of E2 is responsible for modulating receptor binding, possibly through intramolecular interactions. Finally, E2 proteins from different isolates displayed a profile of binding to human hepatic cells different from that observed on Molt-4 cells or isolated recombinant CD81, indicating that additional factors are involved in viral recognition by target liver cells.  (+info)

Temporal regulation of CD81 following retinal injury in the rat. (63/333)

Following retinal injury, glial cells within the retina undergo a response that is characterized by the proliferation of astrocytes, Muller cells, and retinal pigment epithelial cells. CD81, a small membrane protein known to be involved in cell proliferation, is up-regulated after injury. This study focuses on the temporal regulation of CD81, relating the expression of this protein to glial fibrillary acidic protein (GFAP), the classic marker of gliosis. CD81 levels were elevated at 7 days after injury and remained elevated at 30 days after injury; GFAP was increased at 7 days and continued to increase until 30 days post injury. This association of CD81 with glial reactivity may provide a clue to the regulation of the proliferative response following retinal injury.  (+info)

Human CD81 directly enhances Th1 and Th2 cell activation, but preferentially induces proliferation of Th2 cells upon long-term stimulation. (64/333)

BACKGROUND: CD81, a cell-surface protein of the tetraspanin superfamily, has been shown to costimulate T cell activation in murine T cells, and is involved in development of Th2 immune responses in mice. RESULTS: Here it is shown that stimulation of CD81 on human T cells can enhance T cell activation by antigen or superantigen, causing an increase in the early activation marker CD69, and increasing the number of cytokine-producing and proliferating T cells. Interestingly, CD81 costimulates cytokine production by T cells producing both Th1 and Th2 cytokines. Although human CD81 is highly expressed on non-T as well as T cells, CD81 costimulation appears to act directly on T cells. Pre-incubation of purified T cells with anti-CD81 antibody is sufficient to increase T cell activation, while pre-incubation of non-T cells is not. However, long-term polyclonal stimulation of T cells by anti-CD3 antibody, in the presence of CD81 costimulation, biases T cells towards the production of IL-4 and not IFNgamma. This is accomplished by a preferential proliferation of IL-4-producing cells. CONCLUSION: Thus, signalling through CD81 on T cells costimulates both Th1 and Th2 cells, but increases the number of Th2 cells during long-term activation.  (+info)