Loading...
(1/333) Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions.

The tetraspans are molecules with four transmembrane domains which are engaged in multimolecular complexes (the tetraspan web) containing a subset of beta1 integrins (in particular alpha3beta1, alpha4beta1 and alpha6beta1), MHC antigens and several unidentified molecules. The molecules associated with tetraspans are readily detected after immunoprecipitation performed in mild detergents such as Brij 97 or CHAPS. In this study we show that another classical mild detergent, digitonin, dissociated most of these associated molecules, including integrins, from the tetraspans CD9, CD37, CD53, CD63, CD82, Co-029, Talla-1 and NAG-2. In contrast, reciprocal immunoprecipitations from various cell lines demonstrated that two other tetraspans, CD81 and CD151, formed complexes with integrins not disrupted by digitonin. These complexes were CD81/alpha4beta1, CD151/alpha3beta1 and CD151/alpha6beta1. Furthermore, a new anti-CD151 monoclonal antibody (mAb), TS151r, was shown to have a restricted pattern of expression, inversely related to the sum of the levels of expression of alpha6beta1 and alpha3beta1. This mAb was unable to co-precipitate integrins in digitonin, suggesting that its epitope is blocked by the association with integrins. Indeed, the binding of TS151r to the cell surface was quantitatively diminished following alpha3beta1 overexpression. Altogether, these data suggest that, among tetraspans, CD81 interacts directly with the integrin alpha4beta1, and CD151 interacts directly with integrins alpha3beta1 and alpha6beta1. Because all tetraspan-tetraspan associations are disrupted by digitonin, it is likely that the other tetraspans interact indirectly with integrins, through interactions with CD81 or CD151.  (+info)

(2/333) Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81.

A truncated soluble form of the hepatitis C virus E2 glycoprotein, E2661, binds specifically to the surface of cells expressing human CD81 (hCD81) but not other members of the tetraspanin family (CD9, CD63, and CD151). No differences were noted between the level of E2661 binding to hCD81 expressed on the surface of rat RBL or KM3 cells compared to Daudi and Molt-4 cells, suggesting that additional human-cell-specific factors are not required for the primary interaction of E2 with the cell surface. E2 did not interact with African green monkey (AGM) CD81 on the surface of COS cells, which differs from the hCD81 sequence at four residues within the second extracellular region (EC2) (amino acids [aa] 163, 186, 188, and 196), suggesting that one or more of these residues defines the site of interaction with E2. Various recombinant forms of CD81 EC2 show differences in the ability to bind E2, suggesting that CD81 conformation is important for E2 recognition. Regions of E2 involved in the CD81 interaction were analyzed, and our data suggest that the binding site is of a conformational nature involving aa 480 to 493 and 544 to 551 within the E2 glycoprotein. Finally, we demonstrate that ligation of CD81 by E2661 induced aggregation of lymphoid cells and inhibited B-cell proliferation, demonstrating that E2 interaction with CD81 can modulate cell function.  (+info)

(3/333) Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein.

Hepatitis C virus (HCV) glycoproteins E1 and E2, when expressed in eukaryotic cells, are retained in the endoplasmic reticulum (ER). C-terminal truncation of E2 at residue 661 or 715 (position on the polyprotein) leads to secretion, consistent with deletion of a proposed hydrophobic transmembrane anchor sequence. We demonstrate cell surface expression of a chimeric glycoprotein consisting of E2 residues 384 to 661 fused to the transmembrane and cytoplasmic domains of influenza A virus hemagglutinin (HA), termed E2661-HATMCT. The E2661-HATMCT chimeric glycoprotein was able to bind a number of conformation-dependent monoclonal antibodies and a recombinant soluble form of CD81, suggesting that it was folded in a manner comparable to "native" E2. Furthermore, cell surface-expressed E2661-HATMCT demonstrated pH-dependent changes in antigen conformation, consistent with an acid-mediated fusion mechanism. However, E2661-HATMCT was unable to induce cell fusion of CD81-positive HEK cells after neutral- or low-pH treatment. We propose that a stretch of conserved, hydrophobic amino acids within the E1 glycoprotein, displaying similarities to flavivirus and paramyxovirus fusion peptides, may constitute the HCV fusion peptide. We demonstrate that influenza virus can incorporate E2661-HATMCT into particles and discuss experiments to address the relevance of the E2-CD81 interaction for HCV attachment and entry.  (+info)

(4/333) Finding the right RNA: identification of cellular mRNA substrates for RNA-binding proteins.

Defects in RNA-binding proteins have been implicated in human genetic disorders. However, efforts in understanding the functions of these proteins have been hampered by the inability to obtain their mRNA substrates. To identify cognate cellular mRNAs associated with an RNA-binding protein, we devised a strategy termed isolation of specific nucleic acids associated with proteins (SNAAP). The SNAAP technique allows isolation and subsequent identification of these mRNAs. To assess the validity of this approach, we utilized cellular mRNA and protein from K562 cells and alphaCP1, a protein implicated in a-globin mRNA stability, as a model system. Immobilization of an RNA-binding protein with the glutathione-S-transferase (GST) domain enables isolation of mRNA within an mRNP context and the identity of the bound mRNAs is determined by the differential display assay. The specificity of protein-RNA interactions was considerably enhanced when the interactions were carried out in the presence of cellular extract rather than purified components. Two of the mRNAs specifically bound by alphaCP1 were mRNAs encoding the transmembrane receptor protein, TAPA-1, and the mitochondrial cytochrome c oxidase subunit II enzyme, coxII. A specific poly(C)-sensitive complex formed on the TAPA-1 and coxII 3' UTRs consistent with the binding of aCP1. Furthermore, direct binding of purified alphaCP proteins to these 3' UTRs was demonstrated and the binding sites determined. These results support the feasibility of the SNAAP technique and suggest a broad applicability for the approach in identifying mRNA targets for clinically relevant RNA-binding proteins that will provide insights into their possible functions.  (+info)

(5/333) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance.

The role of transmembrane 4 superfamily (TM4SF) proteins during muscle cell fusion has not been investigated previously. Here we show that the appearance of TM4SF protein, CD9, and the formation of CD9-beta1 integrin complexes were both regulated in coordination with murine C2C12 myoblast cell differentiation. Also, anti-CD9 and anti-CD81 monoclonal antibodies substantially inhibited and delayed conversion of C2C12 cells to elongated myotubes, without affecting muscle-specific protein expression. Studies of the human myoblast-derived RD sarcoma cell line further demonstrated that TM4SF proteins have a role during muscle cell fusion. Ectopic expression of CD9 caused a four- to eightfold increase in RD cell syncytia formation, whereas anti-CD9 and anti-CD81 antibodies markedly delayed RD syncytia formation. Finally, anti-CD9 and anti-CD81 monoclonal antibodies triggered apoptotic degeneration of C2C12 cell myotubes after they were formed. In summary, TM4SF proteins such as CD9 and CD81 appear to promote muscle cell fusion and support myotube maintenance.  (+info)

(6/333) Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato.

It has been shown that tomato (Lycopersicon esculentum) plants respond to flame wounding and electrical stimulation by a rapid (15 min) and systemic up-regulation of proteinase inhibitor (pin) genes. To find other genes having a similar expression pattern, we used subtractive cDNA screening between flamed and control plants to select clones up-regulated by flame wounding. We report the characterization of one of them, a chloroplast mRNA-binding protein encoded by a single gene and expressed preferentially in the leaves. Systemic gene expression in response to flaming in the youngest terminal leaf exhibited three distinct phases: a rapid and transient increase (5-15 min) in transcript accumulation, a decline to basal levels (15-45 min), and then a second, more prolonged increase (60-90 min). In contrast, after a mechanical wound the rapid, transient increase (5 min) was followed by a rapid decline to basal levels but no later, prolonged accumulation. In the petiole, the initial flame-wound-evoked transient increase (15 min) was followed by a continuous decline for 3 h. The nature of the wound signal(s) causing such rapid changes in transcript abundance is discussed in relation to electrical signaling, which has recently been implicated in plant responses to wounding.  (+info)

(7/333) Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association.

CD9 is a member of the tetraspanin superfamily which is characterized by four transmembrane (TM) domains and associates with other surface molecules. This tetraspanin was recently found to be expressed on mature T cells. Here, we investigated which molecules associate with CD9 on T cells and which CD9 domains are required for the association. Immunoprecipitation of T cell lysates with anti-CD9 mAb followed by immunoblotting with mAb against various T cell molecules showed the association of CD9 with CD3, CD4, CD5, CD2, CD29 and CD44. Because association with CD5 was most prominent, we determined the role of CD9 TM or extracellular (EC) domains in the association with CD5. CD9 mutant genes lacking each domain were constructed and introduced into EL4 thymoma cells deficient in CD9 but expressing CD5. Among various types of stable EL4 transfectants, EL4 transfected with the mutant gene lacking TM domains (TM2/TM3) between two EC domains expressed a small amount of the relevant protein without showing association with CD5. CD9(-)CD5(-) monkey COS-7 cells transfected with this mutant gene and the CD5 gene expressed both transfected gene products, but the association of these was not detected. EL4 cells transfected with a CD9/CD81 chimera gene (the CD9 gene containing TM2/TM3 of CD81) expressed the chimeric protein on the cell surface and showed association with CD5. These results suggest an essential role of particular CD9 TM domains in the surface expression of the CD9 molecule as well as the association with CD5.  (+info)

(8/333) Functional characterization of intracellular and secreted forms of a truncated hepatitis C virus E2 glycoprotein.

The E2 protein of hepatitis C virus (HCV) is believed to be a virion surface glycoprotein that is a candidate for inclusion in an antiviral vaccine. A truncated soluble version of E2 has recently been shown to interact with CD81, suggesting that this protein may be a component of the receptor for HCV. When expressed in eukaryotic cells, a significant proportion of E2 forms misfolded aggregates. To analyze the specificity of interaction between E2 and CD81, the aggregated and monomeric forms of a truncated E2 glycoprotein (E2(661)) were separated by high-pressure liquid chromatography and analyzed for CD81 binding. Nonaggregated forms of E2 preferentially bound CD81 and a number of conformation-dependent monoclonal antibodies (MAbs). Furthermore, intracellular forms of E2(661) were found to bind CD81 with greater affinity than the extracellular forms. Intracellular and secreted forms of E2(661) were also found to differ in reactivity with MAbs and human sera, consistent with differences in antigenicity. Together, these data indicate that proper folding of E2 is important for its interaction with CD81 and that modifications of glycans can modulate this interaction. Identification of the biologically active forms of E2 will assist in the future design of vaccines to protect against HCV infection.  (+info)