Novel regulatory regions found downstream of the rat B29/Ig-beta gene. (41/221)

To search for novel regulatory regions, we examined the features of chromatin structure in the rat B29/Ig-beta gene and its flanking regions by determining DNase I hypersensitive sites (DHS) in plasmacytoma-derived Y3 cells. Six Y3 cell-specific DHS were detected at -8.6, promoter, +0.7, +4.4, +6.0, and +8.7 kb. The DHS at +4.4, +6.0, and +8.7 kb were present in the intergenic region between B29/Ig-beta and growth hormone (GH) genes and were mapped inside conserved sequences in rat and humans. In transient transfection into Y3 cells, 2.9-kb DNA containing the +4.4 and +6.0-kb DHS demonstrated six times more enhancing activity than B29/Ig-beta promoter alone. Three intergenic DHS each possessed enhancing activity that was highest in the +4.4-kb region. In the electrophoretic mobility shift assay, a major band shift was demonstrated with Y3 nuclear extract and 0.3-kb DNA containing the +4.4-kb region with a conserved 0.22-kb sequence. By footprint analysis, 20 bases in the middle of the 0.3-kb DNA were protected by Y3 nuclear extract in which the consensus binding site for the OCT family was present. Deletion of the footprinted region reduced enhancing activity to that of the B29/Ig-beta promoter alone. The sequence responsible for the major band shift and transcriptional enhancing activity in the conserved +4.4-kb region thus coincided with the 20-bp footprinted region.  (+info)

Receptor-facilitated antigen presentation requires the recruitment of B cell linker protein to Igalpha. (42/221)

Ags that cross-link the B cell Ag receptor are preferentially and rapidly delivered to the MHC class II-enriched compartment for processing into peptides and subsequent loading onto MHC class II. Proper sorting of Ag/receptor complexes requires the recruitment of Syk to the phosphorylated immunoreceptor tyrosine-based activation motif tyrosines of the B cell Ag receptor constituent Igalpha. We postulated that the Igalpha nonimmunoreceptor tyrosine-based activation motif tyrosines, Y(176) and Y(204), contributed to receptor trafficking. Igalpha(YDeltaF(176,204))/Igbeta receptors were targeted to late endosomes, but were excluded from the vesicle lumen and could not facilitate the presentation of Ag to T cells. Subsequent analysis demonstrated that phosphorylation of Y(176)/Y(204) recruited the B cell linker protein, Vav, and Grb2. Reconstitution of Igalpha(YDeltaF(176,204))/Igbeta with the B cell linker protein rescued both receptor-facilitated Ag presentation and entry into the MHC class II-enriched compartment. Thus, aggregation accelerates receptor trafficking by recruiting two separate signaling modules required for transit through sequential checkpoints.  (+info)

New additions to antibody panels in the characterisation of chronic lymphoproliferative disorders. (43/221)

Advances in flow cytometry techniques and the availability of monoclonal antibodies that detect key functional molecules on lymphocytes have contributed greatly to a more precise diagnosis of the chronic lymphoproliferative disorders. In addition to the diagnostic value, the expression of certain markers such as p53 or CD38 provides relevant prognostic information to the clinician. Beyond their diagnostic and prognostic value, immunological markers play a major role in the detection of minimal residual disease, enabling the clinician to estimate more accurately the response to chemotherapy. Those monoclonal antibodies that are relevant to the characterisation of the chronic lymphoproliferative disorders and that could be incorporated in a routine practice are discussed.  (+info)

Bob1 (OCA-B/OBF-1) differential transactivation of the B cell-specific B29 (Ig beta) and mb-1 (Ig alpha) promoters. (44/221)

The B29 (Igbeta) and mb-1 (Igalpha) gene products are B cell-specific essential components of the B cell receptor that are coexpressed at all stages of B cell differentiation, with the exception of plasma cells, which lack mb-1 expression. Transcription of both genes is governed by a similar cassette of interactive transcription factor-binding elements, including octamer motifs, in TATA-less promoters. In this study, we show the B cell-specific B29 gene promoter is transactivated in B and non-B cells by cotransfection with the B cell-specific octamer cofactor gene, Bob1 (OCA-B/OBF-1). The expression of Bob1 is also sufficient to override the silencing effects of the B29 silencer. This indicates that Bob1 plays a critical role in B cell-specific B29 promoter expression. In contrast, coexpression of Bob1 had no effect on mb-1 promoter activity. Bob1 transactivation only occurs with select octamer sequences that have an adenosine at position 5 (ATGCAAAT). The B29 promoter conforms to this consensus octamer motif, while the mb-1 promoter octamer motif does not. Octamer motif swapping between B29 and mb-1 promoters renders B29 unresponsive to Bob1 transactivation and makes mb-1 competent for Bob1 transactivation, thereby indicating that the B29 octamer motif is solely responsible for Bob1 interaction. Additionally, the mb-1 construct containing the B29 octamer motif is expressed in a plasmacytoma cell line, while the wild-type mb-1 promoter is not. Bob1 transactivation of B29 and the lack of this transactivation of mb-1 account for the differential expression of B29 and mb-1 in terminally differentiated plasma cells.  (+info)

The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. (45/221)

Following B-cell antigen receptor (BCR) ligation, the cytoplasmic domains of immunoglobulin alpha (Ig alpha) and Ig beta recruit Syk to initiate signaling cascades. The coupling of Syk to several distal substrates requires linker protein BLNK. However, the mechanism by which BLNK is recruited to the BCR is unknown. Using chimeric receptors with wild-type and mutant Ig alpha cytoplasmic tails we show that the non-immunoreceptor tyrosine-based activation motif (ITAM) tyrosines, Y176 and Y204, are required to activate BLNK-dependent pathways. Subsequent analysis demonstrated that BLNK bound directly to phospho-Y204 and that fusing BLNK to mutated Ig alpha reconstituted downstream signaling events. Moreover, ligation of the endogenous BCR induced Y204 phosphorylation and BLNK recruitment. These data demonstrate that the non-ITAM tyrosines of Ig alpha couple Syk activation to BLNK-dependent pathways.  (+info)

Peripheral T-cell lymphoma mimicking marginal zone B-cell lymphoma. (46/221)

Peripheral T-cell lymphoma (PTCL) may assume a variety of histologic and cytologic appearances. We describe eight cases of PTCL morphologically simulating marginal zone B-cell lymphoma. We reviewed PTCL cases diagnosed in our institution between 1990 and 2000 and selected eight cases for study based on the following criteria: small-cell morphology with abundant, clear cytoplasm and either marginal zone involvement by the neoplastic infiltrate in lymph node biopsies or lymphoepithelial lesions in extranodal biopsies. Histologic features and ancillary studies were reviewed. Patients included six women and two men with a median age of 53 years (range, 35 to 74 years). Six patients were diagnosed with primary nodal PTCL, and two presented with primary extranodal disease. The original diagnosis was PTCL in only four cases; three cases were diagnosed as atypical lymphoid infiltrate, and one case as benign lymphoepithelial lesion. Lymph node biopsies revealed partial effacement of the architecture with residual follicles surrounded by the neoplastic small cells. Extranodal sites included hard palate, tongue, tonsil, and submandibular glands; all but one case demonstrated lymphoepithelial lesions. Monoclonality was demonstrated in six of eight cases (rearrangement of T-cell receptor gene), and three of eight had an aberrant T-cell population by flow cytometry. The differential diagnosis of atypical lymphoid infiltrates with morphologic features of marginal zone B-cell lymphoma should include PTCL. This uncommon morphological mimicry should be recognized, because PTCL is an aggressive disease regardless of morphology and should be treated accordingly.  (+info)

Transmodulation of BCR signaling by transduction-incompetent antigen receptors: implications for impaired signaling in anergic B cells. (47/221)

B cell tolerance can be maintained by functional inactivation, or anergy, wherein B cell Ag receptors (BCR) remain capable of binding Ag, but are unable to transduce signals. Although the molecular mechanisms underlying this unresponsiveness are unknown, some models of B cell anergy are characterized by disruption of proximal BCR signaling events, and by destabilization of the BCR complex. Receptor destabilization is manifest by a reduced ability to coimmunoprecipitate membrane Ig with the Ig-alpha/Ig-beta signal-transducing complex. To begin to explore the possibility that anergy is the consequence of receptor destabilization, we analyzed a panel of B lymphoma transfectants expressing constant amounts of signal-competent Ag receptors and varied amounts of a receptor with identical specificity, but bearing mutations that render it incapable of interacting with Ig-alpha/Ig-beta. This analysis revealed that coaggregation of signal-incompetent receptors prevented Ag-induced Ig-alpha and Syk phosphorylation, mobilization of Ca(2+), and the up-regulation of CD69 mediated by competent receptors. In contrast, Ag-induced Cbl and Erk phosphorylation were unaffected. Data indicate that coaggregation of destabilized receptors (as few as approximately 15% of total) with signal-competent receptors significantly affects the ability of competent receptors to transduce signals. Thus, BCR destabilization may underlie the Ag unresponsiveness of anergic B cells.  (+info)

Posttransplant lymphoproliferative disorders in lung transplant patients: the Cleveland Clinic experience. (48/221)

PTLD is a well-recognized complication of organ transplantation. Large series of heart, renal, and liver transplants have been examined for the incidence and behavior of PTLD. However, reports of the incidence and characteristics of PTLDs in lung transplant (LTx) patients are few. We report our experience with PTLDs in a large series of LTx recipients at a single institution and compare them to other solid organ transplant recipient PTLDs seen at our institution. Twenty-eight patients were found to have PTLD, of whom 8 were lung transplant recipients. We evaluated nine PTLD specimens from these 8 patients for their histology, immunophenotype (CD20, CD3, EBV-LMP1), EBER status by in situ hybridization, and clinical features. The incidence of PTLD was 3.3% (8/244 patients). The time to development of PTLD, after transplant, was short (median time, 7 mo). All were of B-cell lineage. Overall, EBV was demonstrated in 77.7% (7 of 9 specimens) of PTLDs. All specimens tested for clonality were found to be monoclonal. Five patients died, with a median time to death of only 4.6 months. PTLDs in LTx patients are EBV-associated B-cell, predominantly monoclonal lymphoid lesions similar to other solid organ transplant PTLDs. Compared with other solid organ transplant recipients with PTLD at our institution, PTLDs in LTx patients have a propensity to involve the transplanted organ (P =.001, Fisher's exact test), occur earlier after transplant (P =.003, Wilcoxon test), and have a shorter survival (P =.002, log rank test). Reasons for this may include the relatively higher level of immunosuppression required in these patients and limited options in decreasing it. Although the incidence is low, careful early monitoring of lung transplantation patients is warranted because of the poor prognosis of patients developing this complication.  (+info)