Loading...
(1/292) Core 2-containing O-glycans on CD43 are preferentially expressed in the memory subset of human CD4 T cells.

Human CD4 T cells can be divided into two functionally distinct subsets: a CD45RO+ memory subset and a CD45RA+ naive subset. In an attempt to identify novel cell surface molecules on these cells, we have developed a mAb, anti-1D4. The antigen defined by anti-1D4 was preferentially expressed on the memory subset of freshly isolated peripheral CD4 T cells and 1D4+ CD4 T cells functionally corresponded to memory T cells. Retrovirus-mediated expression cloning revealed that the 1 D4 antigen is human CD43. Transfection of CHO-leu cells, which stably express human CD43, with core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) conferred expression of the 1D4 antigen and mRNA of C2GnT was detected by RT-PCR only in 1D4+ T cells but not in 1D4- T cells, implying that the 1 D4 antigen is composed of core 2-containing O-glycans on CD43. Reactivity with anti-1 D4 was completely abolished when cells were treated with neuraminidase, while them remained weak binding of anti-T305, a previously described mAb which also reacts with CD43 modified with core 2-containing O-glycans. Moreover, anti-1D4 markedly reacted with NIH-3T3 cells expressing human CD43 and low levels of endogenous C2GnT, whereas anti-T305 reacted slightly. These results indicate that the 1D4 antigen is distinct from the epitope defined by anti-T305 and anti-1D4 is a more sensitive probe to detect core 2-containing O-glycans than anti-T305. Taken together, our results indicate that core 2-containing O-glycans, whose expression can easily be detected with anti-1D4, are preferentially expressed in the CD45RO+ memory subset of CD4 T cells.  (+info)

(2/292) B cell response after MMTV infection: extrafollicular plasmablasts represent the main infected population and can transmit viral infection.

The immune response to mouse mammary tumor virus (MMTV) relies on the presentation of an MMTV-encoded superantigen by infected B cells to superantigen-specific T cells. The initial extrafollicular B cell differentiation involved the generation of B cells expressing low levels of B220. These B220low B cells corresponded to plasmablasts that expressed high levels of CD43 and syndecan-1 and were CD62 ligand- and IgD-. Viral DNA was detected nearly exclusively in these B220low B cells by PCR, and retroviral type-A particles were observed in their cytoplasm by electron microscopy. An MMTV transmission to the offspring was also achieved after transfer of B220low CD62 ligand- CD43+ plasmablasts into noninfected females. These data suggest that B220low plasmablasts, representing the bulk of infected B cells, are capable of sustaining viral replication and may be involved in the transmission of MMTV.  (+info)

(3/292) Probing cell-surface architecture through synthesis: an NMR-determined structural motif for tumor-associated mucins.

Cell-surface mucin glycoproteins are altered with the onset of oncogenesis. Knowledge of mucin structure could be used in vaccine strategies that target tumor-associated mucin motifs. Thus far, however, mucins have resisted detailed molecular analysis. Reported herein is the solution conformation of a highly complex segment of the mucin CD43. The elongated secondary structure of the isolated mucin strand approaches the stability of motifs found in folded proteins. The features required for the mucin motif to emerge are also described. Immunocharacterization of related constructs strongly suggests that the observed epitopes represent distinguishing features of tumor cell-surface architecture.  (+info)

(4/292) Structural requirements for CD43 function.

The regulation of T cell activation and adhesion by CD43 (leukosialin, sialophorin) has been thought to be mainly a function of the large size and negative charge of the extracellular domain of the protein. In this work, we demonstrate that the cytoplasmic tail is both necessary and sufficient for the negative regulatory effect of CD43 on cell-cell adhesion. Expression of mutant CD43 proteins in primary T cells from CD43-deficient mice demonstrated that the antiproliferative effect of CD43 is also dependent upon the cytoplasmic tail. In contrast, Ab-mediated costimulation through CD43 does not require the intracellular domain of CD43. These data demonstrate that CD43 primarily serves as a negative regulator of T cell activation and adhesion, and that this is mediated not exclusively by passive effects of the extracellular domain, but requires participation of the cytoplasmic tail, perhaps through interactions with the cytoskeleton, or alternatively, active regulation of intracellular signaling pathways.  (+info)

(5/292) An antiserum raised against the recombinant cytoplasmic tail of the human CD43 glycoprotein identifies CD43 in many mammalian species.

Leukosialin or CD43 is a heavily O-glycosylated transmembrane protein expressed on all cells of the haematopoietic cell lineage with the exception of red blood cells and mature B cells. This antigen has been identified in human, mouse and rat with monoclonal antibodies. Although orthologues of many human and rodent leucocyte cell surface antigens have been described in recent years, CD43, despite its abundance on human and rodent cells, remained uncharacterized in other vertebrate species. The comparison of CD43 amino acid sequences from human, mouse and rat indicated a high level of homology in the cytoplasmic domain. A serum, (p.aCD43cp) raised against the recombinant cytoplasmic tail of the human CD43, was shown not only to recognize human CD43, but it bound to putative CD43 orthologues in many mammalian species. CD43 was found to be expressed in the same leucocyte subpopulations and circumstantial evidence suggested that CD43 is also regulated similarly during leucocyte ontogeny in all species investigated. As CD43+ cells were readily observed in fixed tissues, the p.aCD43cp serum may be used as a reliable reagent for the verification of the haematopoietic origin of infiltrations and, used together with other reagents, for the serological characterization of normal and pathological lymphoid tissues and lymphoid infiltrations in experimental work and in animal disease.  (+info)

(6/292) Modulation of integrin function in hematopoietic progenitor cells by CD43 engagement: possible involvement of protein tyrosine kinase and phospholipase C-gamma.

Attachment of cells to extracellular matrix components is critical for the regulation of hematopoiesis. CD43 is a mucin-like transmembrane sialoglycoprotein expressed on the surface of almost all hematopoietic cells. A highly extended structure of extracellular mucin with negative charge may function as a repulsive barrier to hematopoietic cells. However, some investigators have shown that CD43 has proadhesive properties, and engagement of CD43 has been reported to upregulate integrin-mediated cell adhesion in T cells. We found that cross-linking of CD43 with monoclonal antibodies (MoAbs) enhanced integrin alpha4beta1 (very late antigen [VLA]-4) and alpha5 beta1 (VLA-5)-dependent adhesion of human cord blood CD34(+) cells to fibronectin. CD34(+) CD38(hi), but not CD34(+)CD38(-/low) cells responded significantly to the stimulus, suggesting that committed, but not stem and more immature progenitors are sensitive to CD43-mediated activation of integrin. To elucidate the molecular mechanism leading to integrin activation, we used the growth factor-dependent cell line MO7e. Cross-linking of CD43 induced tyrosine phosphorylation of several intracellular molecules including the protein tyrosine kinase Syk, the proto-oncogene product Cbl, and phospholipase C (PLC)-gamma2 in MO7e cells. Moreover, protein tyrosine kinase inhibitor herbimycin A and PLC inhibitor U73122 both blocked CD43-induced enhancement of adhesion to fibronectin. These results indicate that signals mediated through CD43 may increase integrin affinity to fibronectin via a pathway dependent on protein tyrosine kinase and PLC-gamma activation in hematopoietic progenitors.  (+info)

(7/292) Characterization of anergic anti-DNA B cells: B cell anergy is a T cell-independent and potentially reversible process.

Anti-single stranded DNA (ssDNA) and anti-double stranded DNA (dsDNA) B cells are regulated in non-autoimmune mice. In this report we show that while both anti-ssDNA and anti-dsDNA B cells are blocked in their ability to differentiate into antibody-secreting cells, other phenotypic and functional characteristics distinguish them from one another. Splenic anti-ssDNA B cells are found distributed throughout the B cell follicle, and are phenotypically mature and long-lived. On the other hand, splenic anti-dsDNA B cells are short-lived, exhibit an immature and antigen-experienced phenotype, and localize to the T-B interface of the splenic follicle. Functionally, anti-ssDNA B cells proliferate, albeit suboptimally, in response to anti-IgM, lipopolysaccharide (LPS) and CD40L/IL-4 + anti-IgM stimulation, and tyrosine phosphorylate intracellular proteins upon mIgM cross-linking. Anti-dsDNA B cells, on the other hand, are functionally unresponsive to anti-IgM and LPS stimulation, and do not phosphorylate intracellular proteins, including Syk, upon mIg stimulation. Importantly, anti-DNA B cell anergy is maintained in the absence of T cells since both anti-ssDNA and anti-dsDNA B cells are as efficiently regulated in RAG2(-/-) mice as in their RAG2(+/+) counterparts. Interestingly, the severely anergic state of anti-dsDNA B cells is partially reversible upon stimulation with CD40 ligand and IL-4. In response to these signals, anti-dsDNA B cells remain viable, up-regulate cell surface expression of B7-2 and IgM, and restore their ability to proliferate and phosphorylate Syk upon mIg cross-linking. Collectively, these data suggest that anti-DNA B cell anergy encompasses distinct phenotypes which, even in its most severe form, may be reversible upon stimulation with T cell-derived factors.  (+info)

(8/292) A common signaling pathway via Syk and Lyn tyrosine kinases generated from capping of the sialomucins CD34 and CD43 in immature hematopoietic cells.

The sialomucin CD34 is a useful marker for hematopoietic stem/progenitor cells. However, the role of CD34 remains poorly understood. Here we investigate the functions of CD34 and another sialomucin CD43 coexpressed on hematopoietic stem/progenitor cells. Stimulation of undifferentiated hematopoietic KG1a cells with anti-CD34 or anti-CD43 induced homotypic cytoadhesion, accompanied by formation of a long-lived cap of CD34 and CD43 respectively, which colocalized with F-actin. Stimulation with either antibody specifically increased tyrosine phosphorylation of the identical set of proteins of Lyn, Syk, pp60, pp69, and pp77 at the capping site. These events were similar to those observed in monocytic U937 cells ectopically expressing CD34. After stimulation of KG1a cells, coimmunoprecipitation of Lyn with pp69 and pp77 and of Syk with pp37 was detected in the membrane fraction. Blockade of antibody-induced cap formation by treatment with cytochalasin D leads to inhibition of tyrosine phosphorylation of Syk and pp77 and homotypic cytoadhesion. Moreover, normal human CD34(+) bone marrow cells showed cap formation of CD34 or CD43 after stimulation. These results suggest that crosslinking of either CD34 or CD43 activates the same signaling pathway for cytoadhesion through Lyn, Syk, and the novel tyrosine-phosphorylated proteins within hematopoiesis.  (+info)