Links between CD147 function, glycosylation, and caveolin-1. (57/318)

Cell surface CD147 shows remarkable variations in size (31-65 kDa) because of heterogeneous N-glycosylation, with the most highly glycosylated forms functioning to induce matrix metalloproteinase (MMP) production. Here we show that all three CD147 N-glycosylation sites make similar contributions to both high and low glycoforms (HG- and LG-CD147). l-Phytohemagglutinin lectin binding and swainsonine inhibition experiments indicated that HG-CD147 contains N-acetylglucosaminyltransferase V-catalyzed, beta1,6-branched, polylactosamine-type sugars, which account for its excess size. Therefore, CD147, which is itself elevated on invasive tumor cells, may make a major contribution to the abundance of beta1,6-branched polylactosamine sugars that appear on invasive tumor cells. It was shown previously that caveolin-1 associates with CD147, thus inhibiting CD147 self-aggregation and MMP induction; now we show that caveolin-1 associates with LG-CD147 and restricts the biosynthetic conversion of LG-CD147 to HG-CD147. In addition, HG-CD147 (but not LG-CD147) was preferentially captured as a multimer after treatment of cells with a homobifunctional cross-linking agent and was exclusively recognized by monoclonal antibody AAA6, a reagent that selectively recognizes self-associated CD147 and inhibits CD147-mediated MMP induction. In conclusion, we have 1) determined the biochemical basis for the unusual size variation in CD147, 2) established that CD147 is a major carrier of beta1,6-branched polylactosamine sugars on tumor cells, and 3) determined that caveolin-1 can inhibit the conversion of LG-CD147 to HG-CD147. Because it is HG-CD147 that self-aggregates and stimulates MMP induction, we now have a mechanism to explain how caveolin-1 inhibits these processes. These results help explain the previously established tumor suppressor functions of caveolin-1.  (+info)

The basolateral targeting signal of CD147 (EMMPRIN) consists of a single leucine and is not recognized by retinal pigment epithelium. (58/318)

CD147, a type I integral membrane protein of the immunoglobulin superfamily, exhibits reversed polarity in retinal pigment epithelium (RPE). CD147 is apical in RPE in contrast to its basolateral localization in extraocular epithelia. This elicited our interest in understanding the basolateral sorting signals of CD147 in prototypic Madin-Darby canine kidney (MDCK) cells. The cytoplasmic domain of CD147 has basolateral sorting information but is devoid of well-characterized basolateral signals, such as tyrosine and di-leucine motifs. Hence, we carried out systematic site-directed mutagenesis to delineate basolateral targeting information in CD147. Our detailed analysis identified a single leucine (252) as the basolateral targeting motif in the cytoplasmic tail of CD147. Four amino acids (243-246) N-terminal to leucine 252 are also critical basolateral determinants of CD147, because deletion of these amino acids leads to mistargeting of CD147 to the apical membranes. We ruled out the involvement of adaptor complex 1B (AP1B) in the basolateral trafficking of CD147, because LLC-PK1 cells lacking AP1B, target CD147 basolaterally. At variance with MDCK cells, the human RPE cell line ARPE-19 does not distinguish between CD147 (WT) and CD147 with leucine 252 mutated to alanine and targets both proteins apically. Thus, our study identifies an atypical basolateral motif of CD147, which comprises a single leucine and is not recognized by RPE cells. This unusual basolateral sorting signal will be useful in unraveling the specialized sorting machinery of RPE cells.  (+info)

Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase Inducer (EMMPRIN) release by coronary smooth muscle cells. (59/318)

OBJECTIVE: Matrix metalloproteinases (MMPs) seem to play a prominent role in atherogenesis. Extracellular MMP inducer (EMMPRIN), a cell surface glycoprotein which stimulates MMP synthesis, has recently been detected in human atheroma. We have investigated the influence of oxidized low-density lipoproteins (oxLDLs) on EMMPRIN expression in human coronary artery smooth muscle cells (HCA-SMCs). METHODS AND RESULTS: OxLDL induced a significant increase of EMMPRIN release into HCA-SMC supernatants and a concomitant decrease of cell-associated EMMPRIN. These effects were antagonized by antioxidants as well as by EDTA and the MMP inhibitor GM6001. Western blot analysis demonstrated that MMP-1 and MMP-2 induce the cleavage of the extracellular domain from cell-associated EMMPRIN. MMP-1 and MMP-2 synthesis was upregulated by oxLDL, and, in addition, we have shown that soluble EMMPRIN, isolated from macrophage supernatants, increased MMP-1 and MMP-2 synthesis in HCA-SMC. CONCLUSIONS: Our data suggest that oxLDLs stimulate the release of soluble EMMPRIN, at least in part, by MMP-dependent shedding from the cell surface. Additionally, oxLDLs might induce a circular upregulation of matrix degradation because, in turn, soluble EMMPRIN stimulates MMP synthesis in HCA-SMC.  (+info)

CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. (60/318)

BACKGROUND: The authors investigated whether the presence of matrix metalloproteinase-2 (MMP-2) and its inducer, CD147, in cancerous esophageal lesions and surrounding tissue might help to predict patient prognosis. METHODS: Tissue samples from 101 patients with esophageal squamous cell carcinoma were stained with anti-CD147 and anti-MMP-2 antibodies for immunohistochemical analysis. RESULTS: CD147 was expressed in cancerous and dysplastic lesions, but not in normal tissue. In contrast, MMP-2 was detected mainly in normal interstitial tissue adjacent to cancerous lesions, but it was detected also in cancerous lesions in some patients. Pathologic findings demonstrated that the intensity of MMP-2 staining in normal tissue was associated positively with the depth of tumor infiltration and the stage of disease, whereas MMP-2 staining in cancerous tissue was associated positively with vascular and lymphatic vessel invasion as well as with immature differentiation of cancer cells. Using a proportional hazard model, including information on CD147 staining patterns within cancerous lesions along with clinical cancer staging, improved the accuracy of predicting patient prognosis. CONCLUSIONS: These results suggested that measurement of CD147 and MMP-2 expression with simple immunohistochemical staining may enhance further the understanding of the pathophysiology of invading tumor cells and, when used in combination with cancer staging, may increase the ability of investigators to predict prognosis in patients with esophageal squamous cell carcinoma.  (+info)

Differential expression of extracellular matrix metalloproteinase inducer (CD147) in normal and ulcerated corneas: role in epithelio-stromal interactions and matrix metalloproteinase induction. (61/318)

Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally identified on the tumor cell surface as an inducer of matrix metalloproteinase (MMP) production in neighboring fibroblasts. Here we demonstrate a role for EMMPRIN in MMP induction during corneal wound healing. MMP and EMMPRIN expression was analyzed in normal and ulcerated human corneas, as well as in corneal epithelial and stromal cells in culture using confocal microscopy, zymography, immunoblots, and real-time polymerase chain reaction. In normal cornea EMMPRIN was predominantly expressed in the epithelium but was markedly induced in the anterior stroma of ulcerated corneas. This coincided with MMP-2 induction that co-localized with EMMPRIN at the epithelio-stromal boundary. The role of epithelial-stromal interaction in MMP induction was investigated in an in vitro co-culture system and demonstrated an induction and co-localization of EMMPRIN and MMP-2 in the fibroblasts at the interface with epithelial cells. Direct contact of fibroblasts with EMMPRIN-containing purified epithelial cell membranes also induced MMP-1, MMP-2, and EMMPRIN and this was inhibited by a blocking anti-EMMPRIN antibody, suggesting that EMMPRIN was primarily responsible for this induction. These findings, and the up-regulation of EMMPRIN by epidermal growth factor and transforming growth factor-beta, demonstrate a role for EMMPRIN in wound healing and suggest that sustained local up-regulation of EMMPRIN and MMPs in chronic situations in which healing is delayed may lead to excessive matrix degradation and corneal melts.  (+info)

Regulation of CD147 cell surface expression: involvement of the proline residue in the CD147 transmembrane domain. (62/318)

CD147, also known as extracellular matrix metalloproteinase inducer, is a regulator of matrix metalloproteinase production and serves as a signaling receptor for extracellular cyclophilins. Here we demonstrate that the cell surface expression of CD147 is regulated by cyclophilins via the transmembrane domain of CD147. Solution binding experiments demonstrated that the transmembrane domain was both necessary and sufficient for CD147 binding to cyclophilin A (CypA). Treatment with cyclosporin A significantly reduced surface expression of CD147 and of CD8-CD147 fusion protein carrying the extracellular domain of CD8 fused to the transmembrane and cytoplasmic domains of CD147, but did not affect expression of CD8. Peptide binding studies demonstrated specific interaction between CypA and the proline-containing peptide from the CD147 transmembrane domain. Mutation of this proline residue reduced binding of CD147-derived peptides to CypA and also diminished transport of CD147 to the plasma membrane without reducing the total level of CD147 expression. These results suggest involvement of a cyclophilin-related protein in CD147 cell surface expression and provide molecular details for regulation of CD147 trafficking by cyclophilins.  (+info)

Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. (63/318)

To identify the function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome (SARS) coronavirus (CoV), we analyzed the protein-protein interaction among HAb18G/CD147, cyclophilin A (CyPA), and SARS-CoV structural proteins by coimmunoprecipitation and surface plasmon resonance analysis. Although none of the SARS-CoV proteins was found to be directly bound to HAb18G/CD147, the nucleocapsid (N) protein of SARS-CoV was bound to CyPA, which interacted with HAb18G/CD147. Further research showed that HAb18G/CD147, a transmembrane molecule, was highly expressed on 293 cells and that CyPA was integrated with SARS-CoV. HAb18G/CD147-antagonistic peptide (AP)-9, an AP of HAb18G/CD147, had a high rate of binding to 293 cells and an inhibitory effect on SARS-CoV. These results show that HAb18G/CD147, mediated by CyPA bound to SARS-CoV N protein, plays a functional role in facilitating invasion of host cells by SARS-CoV. Our findings provide some evidence for the cytologic mechanism of invasion by SARS-CoV and provide a molecular basis for screening anti-SARS drugs.  (+info)

Expression of basigin, an inducer of matrix metalloproteinases, in the rat ovary. (64/318)

The extensive tissue remodeling that occurs during follicular development, ovulatory rupture, and the formation and regression of the corpus luteum (CL) requires local degradation of the extracellular environment by matrix metalloproteinases (MMPs). This report characterizes the expression pattern of basigin (Bsg), a putative regulator of MMP induction, in the rat ovary. An induced superovulation model (eCG/hCG) was used in immature rats to evaluate Bsg expression profiles in ovaries collected during the follicular phase, the preovulatory period, and the luteal lifespan. Levels of Bsg mRNA were unchanged through follicular growth (0-48 h post-eCG) and increased during postovulatory luteinization (24 and 48 h post-hCG; P < 0.01). Bsg expression persisted into pseudopregnancy (4-8 days post-hCG) and after functional luteal regression (12 days post-hCG). The profile of Bsg expression during regression of the CL was examined using a model of induced luteolysis. Both functional and structural regression was associated with a decline in Bsg expression levels. Bsg mRNA and protein localized to the theca of preovulatory follicles (12 h post-hCG) and formative and functional CL (24 h-8 days post-hCG). Bsg expression profiles in the induced ovulation and CL regression models were similar to observations made in naturally cycling mature rats. In the cycling ovary, Bsg signaling localized to newly forming CL, the theca of preovulatory follicles, and appeared to be lower in CL from previous estrous cycles. A putative regulatory mechanism of Bsg expression was identified using an in vitro model; treatment of cultured granulosa cells with hCG significantly augmented Bsg mRNA expression levels. The processes of ovulation and luteogenesis may be facilitated by Bsg expression and its induction or regulation of the MMPs.  (+info)