Implantation site intermediate trophoblasts in placenta cretas. (41/180)

Placenta cretas are defined as abnormal adherences or ingrowths of placental tissue, but their pathogenetic mechanism has not been fully explained. During histologic examination of postpartum uteri, we noticed that the number of implantation site intermediate trophoblasts was increased in the placental bed of placenta cretas. To validate our observation and to address the pathogenetic role of implantation site intermediate trophoblasts in placenta cretas, we examined postpartum uteri with placenta cretas (n=34) and noncretas (n=22), obtained from Cesarean or immediate postpartum hysterectomy specimens. Using antibody to CD146, a marker for implantation site intermediate trophoblasts, we found that placenta cretas had significantly thicker layer of implantation site intermediate trophoblasts (2300+/-1200 mum) than noncretas (1500+/-1200 microm, P<0.025). We also observed that the confluent distribution of cells was more frequent in placenta cretas (97%) than noncretas samples (45%, P<0.001), and that the total number of implantation site intermediate trophoblasts within the superficial myometrium of the placental bed was significantly higher in placenta cretas than noncretas. Using antibodies to Ki-67, Bcl-2 and cleaved caspase-3 to determine the proliferative index and apoptotic rates of implantation site intermediate trophoblasts, we found that they were close to zero in both groups and did not differ significantly. These findings suggest that the increased number of implantation site intermediate trophoblasts observed in placenta cretas may be related to the pathogenesis of placental ingrowth, but the mechanism by which the increase in implantation site intermediate trophoblasts causes placenta cretas remains to be clarified.  (+info)

Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. (42/180)

Somatic stem cells have been claimed to possess an unexpectedly broad differentiation potential (referred to here as plasticity) that could be induced by exposing stem cells to the extracellular developmental signals of other lineages in mixed-cell cultures. Recently, this and other experimental evidence supporting the existence of stem-cell plasticity have been refuted because stem cells have been shown to adopt the functional features of other lineages by means of cell-fusion-mediated acquisition of lineage-specific determinants (chromosomal DNA) rather than by signal-mediated differentiation. In this study we co-cultured mouse neural stem cells (NSCs), which are committed to become neurons and glial cells, with human endothelial cells, which form the lining of blood vessels. We show that in the presence of endothelial cells six per cent of the NSC population converted to cells that did not express neuronal or glial markers, but instead showed the stable expression of multiple endothelial markers and the capacity to form capillary networks. This was surprising because NSCs and endothelial cells are believed to develop from the ectoderm and mesoderm, respectively. Experiments in which endothelial cells were killed by fixation before co-culture with live NSCs (to prevent cell fusion) and karyotyping analyses, revealed that NSCs had differentiated into endothelial-like cells independently of cell fusion. We conclude that stem-cell plasticity is a true characteristic of NSCs and that the conversion of NSCs to unanticipated cell types can be accomplished without cell fusion.  (+info)

Critical roles of CD146 in zebrafish vascular development. (43/180)

In this report, we use zebrafish as a model system to understand the importance of CD146 in vascular development. Endothelial-specific expression of CD146 was verified by whole-mount in situ hybridization. Suppression of CD146 protein expression by antisense morpholino oligonucleotides (MO) resulted in poorly developed intersomitic vessels (ISVs). In CD146 morphants, we observed a lack of blood flow through the ISV region, despite that fluorescence microangiography showed that the ISVs were present. This finding suggests that the lumens of the developing ISVs may be too narrow for proper circulation. Additionally, remodeling of the caudal vein plexus into functional vascular tubes appeared to be affected. Suppression of CD146 protein expression resulted in a circulation shunt that caused the circulation to by-pass part of the caudal artery/vein system. The same vascular defects were recapitulated by using a second morpholino oligonucleotide. This morphant expressed a truncated CD146 protein with amino acids V32 to T57 at the N terminus deleted in an in-frame manner. This region, therefore, is likely to contain elements critical for CD146 function. This study provides the first in vivo functional assessment of CD146 in embryonic development by showing that knockdown of CD146 protein expression severely hinders vascular development in zebrafish.  (+info)

Endothelin-1 upregulates MCAM in melanocytes. (44/180)

Melanoma cell adhesion molecule (MCAM) is a cell-surface adhesion molecule expressed on over 70% of metastatic melanoma cells but not expressed in normal melanocytes invivo. Protein levels of MCAM correlate with aggressive invasive behavior of melanoma cells in vitro and invivo. Here we demonstrate that endothelin-1 (ET-1) upregulates MCAM protein in primary human melanocytes. MCAM upregulation by ET-1 occurs irrespective of degree of melanocyte pigmentation and is dose-responsive. The drug BQ788 is an endothelin-B (ET(B)) receptor antagonist and inhibits upregulation of MCAM by ET-1. In addition, endothelin-3 (ET-3) and N-succinyl-[Glu9, Ala11, 15]-ET-1-1620, both selective ET(B) agonists, are potent upregulators of MCAM. These demonstrate a critical role for the ET(B) receptor in the upregulation of MCAM by ET-1 and related isoforms. MCAM mRNA abundance is also increased by ET-1 stimulation, thus the mechanism of MCAM protein upregulation may occur at the level of transcription. Our previous studies have demonstrated that ET-1 downregulates E-cadherin in melanocytes and melanoma cells. Since E-cadherin is a melanoma invasion suppressor, and MCAM is a melanoma invasion promoter, ET-1 may promote melanoma invasion and metastasis through the regulation of adhesion molecule expression.  (+info)

Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. (45/180)

PURPOSE: The activator protein (AP)-2alpha transcription factor plays a crucial role in the progression of several human tumors, including malignant melanoma, prostate, and breast cancer. Loss of AP-2alpha results in deregulation of several genes with AP-2alpha binding motifs such as E-cadherin, p21WAF1, MMP-2, MCAM/MUC18, VEGF, and c-KIT. The purpose of our study was to determine AP-2alpha expression distribution among grades of gliomas and any possible effect on prognosis. EXPERIMENTAL DESIGN: A tissue microarray was assembled from all surgical glioma cases with available tissue samples at M.D. Anderson Cancer Center since 1986 to include 72 glioblastomas, 49 anaplastic astrocytomas, 9 low-grade astrocytoma, 37 oligodendrogliomas, 37 anaplastic oligodendrogliomas, 15 mixed oligoastrocytomas, 20 anaplastic mixed oligoastrocytomas, and 7 gliosarcomas. The microarray included normal brain tissue, and AP-2alpha expression was determined by immunohistochemistry. RESULTS: AP-2alpha expression was lost on 99% (P < 0.001) and 98% (P < 0.001) of glioblastomas and anaplastic astrocytomas, respectively, compared with grade 2 astrocytomas and normal brain, all of which (100%) maintained expression of AP-2alpha. The loss of AP-2alpha was a negative prognostic indicator within the overall category of gliomas by univariate analysis (rate ratio, 4.30; 95% confidence interval, 2.60-7.10; P < 0.001). However, there was no significant effect of loss of AP-2alpha expression on survival observed after adjustment for patient age, Karnofsky Performance Scale score, tumor grade, and extent of resection (rate ratio, 1.2; 95% confidence interval, 0.6-2.2; P = 0.6). CONCLUSIONS: AP-2alpha expression correlates inversely with glioma grade, suggesting a direct role in glioma tumorigenicity, possibly through subsequent deregulation of target genes. Of all the previously characterized markers of progression, the loss of AP-2alpha would be the most common (96.2%) molecular marker as an astrocytic tumor evolves from grade 2 to 3.  (+info)

Real-time PCR of CD146 mRNA in peripheral blood enables the relative quantification of circulating endothelial cells and is an indicator of angiogenesis. (46/180)

Angiogenesis is a fundamental process in tumour growth and metastatic dissemination. Possible surrogate markers for tumour angiogenesis are the amounts of circulating endothelial cells (CEC) in peripheral blood and the plasma concentration of vascular endothelial growth factor (VEGF). We tested the suitability of real-time PCR for CD146, an endothelial cell-specific antigen, to quantify CEC numbers in comparison to a flow cytometry quantification. Real-time PCR of CD146 mRNA showed high sensitivity and linearity for the quantification of cultivated primary endothelial cells added in different amounts to blood samples. Circulating endothelial cell numbers were quantified in peripheral blood samples of breast cancer patients and healthy controls by four-colour flow cytometry analysis and CD146 real-time PCR, and VEGF plasma concentrations were measured by ELISA. The amounts of CEC detected with both methods correlated significantly and CEC numbers were significantly increased in newly diagnosed breast cancer patients compared to healthy controls. Vascular endothelial growth factor concentrations correlated significantly with CEC numbers, but there was no significant difference in VEGF levels between breast cancer patients and healthy controls indicating that VEGF plasma levels cannot be used as surrogate marker for tumour angiogenesis. Taken together, the quantification of CEC by CD146 real-time PCR showed equivalent results to the flow cytometry analysis. Thus, CD146 real-time PCR may be an easy and reliable approach to quantify CEC in peripheral blood samples and could facilitate the integration of CEC measurements in clinical studies exploring the efficacy of antiangiogenic therapies.  (+info)

Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. (47/180)

PURPOSE: ABT-751 is an oral antimitotic agent that binds to the colchicine site on beta-tubulin. A phase 1 study was conducted to determine the maximum tolerated dose and toxicities of ABT-751 in patients with advanced myelodysplastic syndrome and relapsed or refractory acute leukemias. STUDY DESIGN: Thirty-two patients were treated: nine with 100 (n = 3), 125 (n = 3), or 150 mg/m(2) (n = 3) of ABT-751 given orally once daily for 7 days every 3 weeks and 23 with 75 (n = 3), 100 (n = 3), 125 (n = 5), 150 (n = 5), 175 (n = 3), or 200 mg/m(2) (n = 4) of ABT-751 given orally once daily for 21 days every 4 weeks. Consenting patients had pharmacogenetic sampling and enumeration of circulating endothelial cells (CEC). RESULTS: Dose-limiting toxicity consisted of ileus in one patient at 200 mg/m(2), with a subsequent patient developing grade 2 constipation at the same dose level. One patient with relapsed acute myelogenous leukemia achieved a complete remission that was sustained for 2 months. Four other patients had transient hematologic improvements, consisting of a decrease in peripheral blood blasts and improvements in platelet counts. CEC number was reduced in three patients with a concomitant reduction in peripheral blasts. A previously undescribed nonsynonymous single nucleotide polymorphism, encoding Ala(185)Thr, was identified in exon 4 of the beta-tubulin gene, TUBB, in three other patients. The recommended phase 2 dose in hematologic malignancies is 175 mg/m(2) daily orally for 21 days every 4 weeks. CONCLUSION: Further assessment of ABT-751, especially in combination with other agents, in patients with acute leukemias is warranted.  (+info)

Knockdown of CD146 reduces the migration and proliferation of human endothelial cells. (48/180)

Our previous study has demonstrated that CD146 molecule is a biomarker on vascular endothelium, which is involved in angiogenesis and tumor growth. However the mechanism behind is not clear. Here we have for the first time developed a novel CD146 blockade system using CD146 siRNA to study its function on endothelial cells. Our data showed that CD146 siRNA specifically blocked the expression of CD146 on both mRNA and protein levels, leading to the significant suppression of HUVEC proliferation, adhesion and migration. These results demonstrate that CD146 plays a key role in vascular endothelial cell activity and angiogenesis, and CD146 siRNA can be used as a new inhibitor for anti-angiogenesis therapy.  (+info)