Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. (25/2131)

TLR4 is a member of the recently identified Toll-like receptor family of proteins and has been putatively identified as Lps, the gene necessary for potent responses to lipopolysaccharide in mammals. In order to determine whether TLR4 is involved in lipopolysaccharide-induced activation of the nuclear factor-kappaB (NF-kappaB) pathway, HEK 293 cells were transiently transfected with human TLR4 cDNA and an NF-kappaB-dependent luciferase reporter plasmid followed by stimulation with lipopolysaccharide/CD14 complexes. The results demonstrate that lipopolysaccharide stimulates NF-kappaB-mediated gene expression in cells transfected with the TLR4 gene in a dose- and time-dependent fashion. Furthermore, E5531, a lipopolysaccharide antagonist, blocked TLR4-mediated transgene activation in a dose-dependent manner (IC50 approximately 30 nM). These data demonstrate that TLR4 is involved in lipopolysaccharide signaling and serves as a cell-surface co-receptor for CD14, leading to lipopolysaccharide-mediated NF-kappaB activation and subsequent cellular events.  (+info)

Distinct scavenger receptor expression and function in the human CD14(+)/CD16(+) monocyte subset. (26/2131)

The CD14(+)/CD16(+) subset of human blood monocytes, which expresses low levels of the lipopolysaccharide receptor CD14 and high levels of the Fc receptor CD16 and exhibits features of mature tissue macrophages, is expanded in certain inflammatory conditions and may be relevant in atherosclerosis. Scavenger receptors (ScR) are important for lipid accumulation into macrophage-derived foam cells in atherogenesis and for the clearance of pathogens. Hence, we compared the function and expression of ScR in CD33(low) CD16(+) and CD33(high) CD14(++) monocyte subsets. Double immunofluorescence analysis of isolated monocytes revealed that the CD33(low) subset showed lower specific, ScR-mediated binding of DiI-labeled modified low-density lipoproteins (LDL) than CD33(high) cells. Differences in modified LDL binding between subsets were accompanied by changes in mRNA expression. RT-PCR in sorted cells indicated lower ScR class A type I/II (ScR-AI/II) mRNA levels in CD14(+)/CD16(+) than in CD14(++) cells, whereas CD36 transcripts were unaltered. This was paralleled by findings in mostly CD16(+) monocyte-derived macrophages showing a marked reduction in ScR-mediated binding of acetylated LDL, but not in the binding of oxidized LDL, and lower expression of ScR-AI/II mRNA, but not CD36 transcripts, after exposure to tumor necrosis factor-alpha for 48 h in vitro. Thus the subset of CD14(+)/CD16(+) monocytes shows distinct ScR function and expression, possibly reflecting a preactivation by cytokines with a predilection for specific inflammatory or vascular conditions, e.g., atherogenesis.  (+info)

Lipopolysaccharide-coated erythrocytes activate human neutrophils via CD14 while subsequent binding is through CD11b/CD18. (27/2131)

Interaction of LPS with monocytes and neutrophils is known to occur via CD14 and is strongly enhanced by LPS-binding protein (LBP). Integrins as well as CD14 play a role in the interaction of erythrocytes (E) coated with LPS or whole Gram-negative bacteria with phagocytes. We reasoned that the density of LPS on a particle is an important determinant in these interactions. Therefore, E were coated with different concentrations of LPS (ELPS). The binding of these ELPS to neutrophils was evaluated by flow cytometry. Simultaneously, we measured fMLP receptor expression to evaluate neutrophil activation. ELPS only bound to neutrophils in the presence of LBP. Blocking CD14 inhibited both activation and binding, whereas blocking complement (C) receptor 3 (CR3) inhibited binding but not activation. TNF activation restored ELPS binding in CD14-blocked cells but not in cells in which CR3 was blocked. Salmonella minnesota did bind to neutrophils independent of CR3 or CD14. The addition of LBP enhanced binding twofold, and this surplus was dependent upon CD14 but not on CR3. We conclude that ELPS interact with neutrophils via CD14, initially giving rise to cell activation; subsequently, binding is solely mediated by activated CR3.  (+info)

The origin and function of soluble CD14 in experimental bacterial meningitis. (28/2131)

Murine experimental meningitis models induced by either Escherichia coli LPS, live Streptococcus pneumoniae, or Listeria monocytogenes were used to study the origin and potential function of soluble CD14 (sCD14) in the brain during bacterial meningitis. Whereas intracerebral infection caused only a minor and/or transient increase of sCD14 levels in the serum, dramatically elevated concentrations of sCD14 were detected in the cerebrospinal fluid. Reverse-transcriptase PCR and FACS analysis of the leukocytes invading the subarachnoid compartment revealed an active amplification of CD14 transcription and concomitant surface expression. These findings were confirmed by in situ hybridization and immunohistochemical analysis. In contrast, parenchymal astrocytes and microglial cells were shown not to significantly contribute to the elevated levels of sCD14. Simultaneous intracerebral inoculation of rsCD14 and S. pneumoniae resulted in a markedly increased local cytokine response. Taken together, these data provide the first evidence that sCD14 can act as an inflammatory co-ligand in vivo. Thus, during bacterial meningitis, sCD14 is massively released by intrathecal leukocytes, and the sCD14 found in the cerebrospinal fluid can play an important role in the pathogenesis of this disease.  (+info)

CD14 plays no major role in shock induced by Staphylococcus aureus but down-regulates TNF-alpha production. (29/2131)

Recent in vitro studies have suggested that CD14, a major receptor for LPS, may also be a receptor for cell wall components of Gram-positive bacteria and thus play a role in Gram-positive shock. To analyze the in vivo role of CD14 in responses to Gram-positive bacteria, CD14-deficient and control mice were injected with Staphylococcus aureus, and the effects on lethality, bacterial clearance, and production of cytokines were analyzed. Survival of CD14-deficient and control mice did not differ significantly after administration of various doses of either unencapsulated or encapsulated S. aureus; furthermore, mice in both groups displayed similar symptoms of shock. In addition, inflammatory cytokines such as TNF-alpha and IL-6 were readily detectable in the serum of CD14-deficient mice injected with live or antibiotic-killed S. aureus. Surprisingly, the serum concentration of TNF-alpha in CD14-deficient mice was at least threefold higher than in control mice after injection of either unencapsulated or encapsulated S. aureus, suggesting that CD14 down-regulates TNF-alpha. A similar increase in serum TNF-alpha occurred when CD14-deficient animals were injected with gentamicin-killed bacteria even though no symptoms of shock were observed. These studies indicate that CD14, in contrast to its key function in responses to the Gram-negative bacterium, Escherichia coli 0111, does not play a prominent role in septic shock induced by S. aureus, and that the symptoms of S. aureus shock are not due solely to TNF-alpha.  (+info)

Surface phenotype analysis of CD16+ monocytes from leukapheresis collections for peripheral blood progenitors. (30/2131)

In peripheral blood progenitor cell (PBPC) collections from patients with solid tumour or haematological malignancy, monocytes were separated into two subpopulations. The majority of monocytes expressed CD14 at a high density without CD16 antigen (the CD14+CD16- monocytes). The remaining monocytes co-expressed CD14 and CD16 (the CD14+CD16+ monocytes). These CD14+CD16+ monocytes amounted to 20.6 +/- 15.8%, while those in peripheral blood (PB) obtained from healthy volunteers were 7.3 +/- 3.1% (P < 0.05). When subdividing the CD14+CD16+ monocytes into CD14brightCD16dim and CD14dimCD16bright cells, both populations were found to be increased in PBPC collections. Since typical CD14+CD16+ monocytes are the CD14dimCD16bright population, we compared the additional surface antigens on CD14dimCD16bright monocytes with those of CD14+CD16- monocytes. In PBPC collections, the CD14dimCD16bright monocytes exhibited lower levels of CD11b, CD15, CD33 and CD38 expression and higher levels of CD4, CD11a, CD11c and MHC class II, and also revealed a higher percentage of CD4+ cells and a lower percentage of CD15+ cells and CD38+ cells, compared with the CD14+CD16- monocytes. When compared with the CD14dimCD16bright monocytes in PB, those in PBPC collections exhibited higher expression of CD4 and lower expression of CD11b, and also showed higher percentages of CD4+ cells and CD38+ cells and a lower percentage of CD11b+ cells. These results suggest that PBPC collections may be rich in the CD14+CD16+ monocytes in which the proportion of the immature population is increased. It is likely that these monocytes participate in the haematological and immune recovery after PBPC transplantation.  (+info)

CD14 transgenic mice expressing membrane and soluble forms: comparisons of levels of cytokines and lethalities in response to lipopolysaccharide between transgenic and non-transgenic mice. (31/2131)

Two different metallothionein promoter-mouse CD14 fusion genes were constructed. The membrane form of the CD14 fusion gene, designated M14M, contained the full-length CD14 cDNA sequence, whereas the soluble form of the fusion gene, designated M14S, was truncated to lack the sequence for the phosphatidylinositol-anchoring site. Expression of transgenic RNA in M14M and M14S mice on the basal diet was abundant in the liver. After maintenance with water containing ZnSO4 (50 mM) for 4 days, expression of transgenic RNA in M14M and M14S mice was strong in the small intestine. Immunohistochemical analysis demonstrated CD14 expression in these organs in M14S and M14M mice. Levels of CD14 in sera from M14S mice after zinc administration were significantly higher than these animals maintained with normal water, M14M mice after zinc administration and non-transgenic mice. Sera from M14S and M14M mice after stimulation with lipopolysaccharide LPS (LPS) demonstrated significantly lower levels of tumor necrosis factor-alpha and IL-6 than those from non-transgenic mice. Lethality in endotoxin shock produced by i.p. injection of 30-40 microg/g body wt LPS was not different between M14S, M14M and non-transgenic mice. However, survival rates in the lethal Shwartzman reaction induced by priming and challenge injections of LPS were significantly higher in M14M and M14S mice than in non-transgenic mice.  (+info)

Membrane-anchored forms of lipopolysaccharide (LPS)-binding protein do not mediate cellular responses to LPS independently of CD14. (32/2131)

Inflammatory responses of myeloid cells to LPS are mediated through CD14, a glycosylphosphatidylinositol-anchored receptor that binds LPS. Since CD14 does not traverse the plasma membrane and alternatively anchored forms of CD14 still enable LPS-induced cellular activation, the precise role of CD14 in mediating these responses remains unknown. To address this, we created a transmembrane and a glycosylphosphatidylinositol-anchored form of LPS-binding protein (LBP), a component of serum that binds and transfers LPS to other molecules. Stably transfected Chinese hamster ovary (CHO) fibroblast and U373 astrocytoma cell lines expressing membrane-anchored LBP (mLBP), as well as separate CHO and U373 cell lines expressing membrane CD14 (mCD14), were subsequently generated. Under serum-free conditions, CHO and U373 cells expressing mCD14 responded to as little as 0.1 ng/ml of LPS, as measured by NF-kappaB activation as well as ICAM and IL-6 production. Conversely, the vector control and mLBP-expressing cell lines did not respond under serum-free conditions even in the presence of more than 100 ng/ml of LPS. All the cell lines exhibited responses to less than 1 ng/ml of LPS in the presence of the soluble form of CD14, demonstrating that they are still capable of LPS-induced activation. Taken together, these results demonstrate that mLBP, a protein that brings LPS to the cell surface, does not mediate cellular responses to LPS independently of CD14. These findings suggest that CD14 performs a more specific role in mediating responses to LPS than that of simply bringing LPS to the cell surface.  (+info)