Role of CD8 T cells in mycobacterial infections. (73/894)

The interaction between IFN-gamma-secreting CD4+ T cells and macrophages has long been established as integral in the protective immune response against tuberculosis. More recently, evidence from murine experiments and human studies has begun to demonstrate an essential role for MHC class I restricted CD8+ T cells in this immune response. CD8+ T cells can produce the protective cytokines IFN-gamma and TNF-alpha in addition to their classical cytolytic functions. However, the exact protective mechanisms and antigens recognized by these important cells remain poorly characterized.  (+info)

Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. (74/894)

Dendritic cells express several alternatively spliced CD1e mRNAs. These molecules encode proteins characterized by the presence of either one, two, or three alpha domains and either a 51- or 63-amino acid cytoplasmic domain. Moreover, mRNAs encoding isoforms lacking the transmembrane domain are observed. Several of these CD1e isoforms were expressed in transfected cells, and two of them, with three alpha domains, displayed a particular processing pathway. These latter isoforms slowly leave the endoplasmic reticulum due to the presence of atypical dilysine motifs in the cytoplasmic tail. These molecules are associated with the beta(2)-microglobulin and accumulate in late Golgi and late endosomal compartments. In the latter compartments, they are cleaved into soluble forms that appear to be stable. In dendritic cells, these isoforms are mainly located in the Golgi apparatus, and upon maturation they are redistributed to late endosomal compartments. This work demonstrates the existence of CD1e molecules. As compared with other CD1 molecules, CD1e displays fundamentally different properties and therefore may represent a third type of CD1 molecules.  (+info)

Structural requirements for antigen presentation by mouse CD1. (75/894)

The structural basis for the T cell response to glycolipid antigens (Ags) remains poorly understood. T lymphocytes autoreactive for mouse CD1 (mCD1.1) or reactive for the glycosphingolipid alphagalactosylceramide (alpha-GalCer) presented by mCD1.1 have been described previously. In this paper it is shown that mutations at the top of the alpha helices and in the bottom of the Ag-binding groove can disrupt both mCD1.1 autoreactivity and alpha-GalCer recognition. The locations of the positions that affect T cell responses indicate that recognition of mCD1.1 is not likely to be unconventional or superantigen-like. Furthermore, the effects of the bottom of the pocket mutation suggest that the autoreactive response could require an autologous ligand, and they indicate that alpha-GalCer binds to the groove of mCD1.1, most likely with the shorter 18-carbon hydrophobic chain in the A' pocket. Natural killer T cell hybridomas with identical T cell antigen receptor (TCR) alpha chains and different beta chains respond differently to alpha-GalCer presented by mCD1.1 mutants. This finding indicates a role for TCR beta in defining natural killer T cell specificity, despite the more restricted diversity of the alpha chains in these cells. Overall, the data are consistent with a mode of lipoglycan recognition similar to that proposed for glycopeptides, in which the TCR alpha and beta chains survey a surface composed of both mCD1.1 and the carbohydrate portion of alpha-GalCer.  (+info)

Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. (76/894)

A major group of natural killer (NK) T cells express an invariant Valpha14(+) T cell receptor (TCR) specific for the lipoglycan alpha-galactosylceramide (alpha-GalCer), which is presented by CD1d. These cells may have an important immune regulatory function, but an understanding of their biology has been hampered by the lack of suitable reagents for tracking them in vivo. Here we show that tetramers of mouse CD1d loaded with alpha-GalCer are a sensitive and highly specific reagent for identifying Valpha14(+) NK T cells. Using these tetramers, we find that alpha-GalCer-specific T lymphocytes are more widely distributed than was previously appreciated, with populations of largely NK1.1(-) but tetramer-binding T cells present in the lymph nodes and the intestine. Injection of alpha-GalCer leads to the production of both interferon gamma and interleukin 4 by nearly all NK T cells in the liver and the majority of the spleen within 2 h. These cells mostly disappear by 5 h, and they do not reappear after 1 wk. Curiously, tetramer-positive thymocytes do not rapidly synthesize cytokines, nor do they undergo decreases in cell number after lipid antigen stimulation, although they express equivalent TCR levels. In summary, the data presented here demonstrate that alpha-GalCer-specific NK T cells undergo a unique and highly compartmentalized response to antigenic stimulation.  (+info)

A NK1.1+ thymocyte-derived TCR beta-chain transgene promotes positive selection of thymic NK1.1+ alpha beta T cells. (77/894)

As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  (+info)

The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. (78/894)

The structural basis for the T cell recognition of lipoglycans remains to be elucidated. We have described autoreactive T cells responsive to GM1 ganglioside presented by CD1b. We show that glycosphingolipids bind to CD1b on the cell surface at neutral pH and are recognized without internalization or processing. Furthermore, soluble GM-CD1b complexes stimulate specific T cells. Oligosaccharide groups containing five or more sugars are required to build a minimal epitope for TCR recognition. This suggests a mechanism for T cell recognition of glycosphingolipids in which much of the CD1b-bound ligand is exposed. Binding to CD1b is a highly reversible process and other ceramide-containing glycosphingolipids displace GM1. These nonantigenic compounds act as blockers and may prevent harmful autoreactivity in vivo.  (+info)

Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathy. (79/894)

Vasculitic neuropathy and chronic inflammatory demyelinating polyneuropathy (CIDP) are neuropathies characterized by a T-lymphocyte infiltrate in the peripheral nerves. The microenvironment in which these T cells become activated, and the molecules and cells that play a role in this process are incompletely understood. Using immunohistochemical analysis, we studied the effect of the presence of adhesion, costimulatory and antigen-presenting molecules on different cell types as a precondition for local T-cell activation in human sural nerve biopsies of seven patients with CIDP, three patients with vasculitic neuropathy and three healthy controls. In biopsies from CIDP and vasculitic neuropathy patients, but not in those from healthy controls, Schwann cells expressed the adhesion/T-cell stimulatory molecule CD58 (LFA-3). The CD58 molecule was also present on endothelial cells of all vasculitic neuropathy patients and one CIDP patient. In biopsies from normal controls and patients, CD54 (ICAM-1) expression was detectable on microvascular endothelial cells. In addition, expression of the costimulatory molecule CD86 was detected on vascular tissue in patients with vasculitic neuropathy. Although macrophages were always present in all subjects, expression of the major histocompatibility complex (MHC)-like molecule CD1a by macrophages was restricted to biopsies from two CIDP patients and one vasculitic neuropathy patient. Unexpectedly, Schwann cells of a single vasculitis patient strongly expressed CD1b, a molecule involved in the presentation of self-glycolipids to T cells. Schwann cells in biopsies from patients and normal controls expressed high levels of the invariant chain, CD74, a molecule involved in the intracellular sorting of MHC class II molecules. There was no evidence for the presence of dendritic cells in sural nerve biopsies. These findings support a model in which T-cell activation can be initiated and/or perpetuated locally in sural nerve biopsies of patients with CIDP and vasculitic neuropathy, and predict an important role for Schwann cells and endothelial cells.  (+info)

Staphylococcal enterotoxin B induces potent cytotoxic activity by intraepithelial lymphocytes. (80/894)

In food poisoning, Staphylococcus aureus secretes staphylococcal enterotoxin B (SEB), a superantigen that causes intense T-cell proliferation and cytotoxicity. The effects of SEB on lytic activity by human intestinal intraepithelial lymphocytes (IEL) were investigated. Jejunal IEL, from morbidly obese individuals undergoing gastric bypass operations, were tested for SEB-induced cytotoxicity against C1R B-lymphoblastoid cells, HT-29 adenocarcinoma cells, or CD1d-transfected cells using the 51Cr-release assay. Fas and Fas ligand expression were detected by immunofluorescence and flow cytometry and soluble ligand by enzyme-linked immunosorbent assay (ELISA). In the presence of SEB, IEL became potently cytotoxic against C1R cells and interferon-gamma (IFN-gamma)-precultured HT-29 cells, causing 55+/-10% and 31+/-6% lysis, respectively, greater than that by phytohaemagglutinin (PHA)-, interleukin-2 (IL-2)-, or anti-T-cell receptor (TCR)-activated IEL. SEB-stimulated peripheral blood (PB) CD8+ T cells lysed similar numbers of C1R cells but fewer HT-29 cells (53+/-13% and 8+/-5%, respectively). IEL killing of C1R cells involved interaction of major histocompatibility complex (MHC) class II with TCR, CD2 with CD58, and CD11a with CD54, and was perforin mediated. SEB-induced IEL lysis of HT-29 cells, in contrast, was caused by an unknown target cell structure, not MHC class II or CD1d, and resulted from a combination of perforin and Fas-mediated events. The potent cytotoxic activities of IEL promoted by SEB utilize two different mechanisms, depending on the surface receptors expressed by the target cells.  (+info)